Advertisement

Climate Dynamics

, Volume 53, Issue 3–4, pp 1567–1580 | Cite as

A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910 C.E.

  • Edward R. CookEmail author
  • Yochanan Kushnir
  • Jason E. Smerdon
  • A. Park Williams
  • Kevin J. Anchukaitis
  • Eugene R. Wahl
Article

Abstract

We develop a new reconstruction of the winter North Atlantic Oscillation (NAO) index using a network of 97 Euro-Mediterranean tree-ring series. The reconstruction covers the period 910–2018 C.E., making it the longest annually resolved estimate of winter NAO variability available. We use nested correlation-weighted principal components regression and the Maximum Entropy Bootstrap method to generate a 2400-member ensemble of reconstructions for estimating the final reconstruction and its quantile uncertainties. Extensive validation testing of the new reconstruction against data withheld from the calibration exercise demonstrates its skill. The skill level of the new reconstruction is also an improvement over two NAO reconstructions published earlier. Spectral analyses indicate that the new reconstruction behaves like a ‘white noise’ process with intermittent band-limited power, suggesting that the winter NAO is stochastically forced. The ‘white noise’ properties of our reconstruction are also shown to be consistent with the spectral properties of long instrumental NAO indices extending back to 1781 and NAO indices extracted from a large number of forced climate model runs covering the last millennium. In contrast, an annually resolved multi-proxy NAO reconstruction of comparable length, based in part on speleothem data, behaves more like externally forced ‘red noise’ process, which is inconsistent with our reconstruction, long observations, and forced model runs.

Keywords

North Atlantic Oscillation Euro-Mediterranean tree rings Millennium reconstruction Stochastic forcing 

Notes

Acknowledgements

This research is supported by National Science Foundation Grant nos AGS-1501856, AGS-1734760, and AGS-1703029. We also acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. The CMIP5 data used here was archived and served from the IRI/LDEO Climate Data Library. Lamont-Doherty Earth Observatory Contribution No. 8295.

References

  1. Appenzeller C, Stocker TF, Anklin M (1998) North Atlantic Oscillation dynamics recorded in Greenland ice cores. Science 282:446–449CrossRefGoogle Scholar
  2. Baek SH, Smerdon JE, Coats S, Williams AP, Cook BI, Cook ER, Seager R (2017) Precipitation, temperature, and teleconnection signals across the combined North American, Monsoon Asia, and Old World Drought Atlases. J Clim 30:7141–7155CrossRefGoogle Scholar
  3. Baker A, Hellstrom C, Kelly BF, Mariethoz G, Trouet V (2015) A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci Rep 5:10307.  https://doi.org/10.1038/srep10307 CrossRefGoogle Scholar
  4. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126CrossRefGoogle Scholar
  5. Berk KN (1984) Validating regression procedures with new data. Technometrics 26(4):331–338CrossRefGoogle Scholar
  6. Chiodo G, Oehrlein J, Polvani LM (2019) Insignificant influence of the 11-year solar cycle on the North Atlantic Oscillation. Nat Geo.  https://doi.org/10.1038/s41561-018-0293-3 Google Scholar
  7. Cook BI, Buckley BM (2009) Objective determination of monsoon season onset, withdrawal, and length. J Geophys Res 114(D23):D23109.  https://doi.org/10.1029/2009JD012795 CrossRefGoogle Scholar
  8. Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Clim 12:1145–1162CrossRefGoogle Scholar
  9. Cook ER, D'Arrigo RD, Briffa KR (1998) A reconstruction of the North Atlantic Oscillation using tree-ring chronologies from North America and Europe. Holocene 8(1):9–17CrossRefGoogle Scholar
  10. Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science 328(5977):486–489CrossRefGoogle Scholar
  11. Cook ER, D’Arrigo RD, Mann ME (2002) A well-verified, multi-proxy reconstruction of the winter North Atlantic oscillation index since AD 1400. J Clim 15(13):1754–1764CrossRefGoogle Scholar
  12. Cook ER, Palmer JG, Ahmed M, Woodhouse CA, Fenwick P, Zafar MU, Wahab M, Khan N (2013a) Five centuries of upper Indus River flow from tree rings. J Hydrol 486:365–375CrossRefGoogle Scholar
  13. Cook ER, Krusic PJ, Anchukaitis KJ, Buckley BM, Nakatsuka T, Sano M, Asia2k members (2013b) Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Clim Dyn 41:2957–2972.  https://doi.org/10.1007/s00382-012-1611-x CrossRefGoogle Scholar
  14. Cook ER, Seager R, Kushnir J, Briffa KR, Buentgen U, Frank D, Krusic PJ, Tegel W, van der Schrier G, Andreu-Hayles L, Baillie M, Baitttinger C, Bleicher N, Bonde N, Brown D, Carrer M, Cooper R, Cufar K, Dittmar C, Esper J, Griggs C, Gunnarson B, Gunther B, Gutierrez E, Haneca K, Helema S, Herzig F, Heussner K-U, Hofmann J, Janda J, Kontic R, Kose N, Kyncl T, Levanic T, Linderholm H, Manning S, Melvin T, Miles D, Neuwirth B, Nicolussi K, Nola P, Panayotov M, Popa I, Rothe A, Seftigen K, Seim A, Svarva H, Svoboda M, Thun T, Timonen M, Touchan R, Trotsiuk V, Trouet V, Walder F, Wazny T, Wilson R, Zang C (2015) Old world megadroughts and pluvials during the Common Era. Sci Adv 1(10):e1500561.  https://doi.org/10.1126/sciadv.1500561 CrossRefGoogle Scholar
  15. Cornes RC, Jones PD, Briffa KR, Osborn TJ (2013) Estimates of the North Atlantic Oscillation back to 1692 using a Paris–London westerly index. Int J Clim 33:228–248CrossRefGoogle Scholar
  16. Cullen H, D’Arrigo R, Cook E, Mann ME (2001) Multiproxy-based reconstructions of the North Atlantic Oscillation over the past three centuries. Paleoceanography 15:27–39CrossRefGoogle Scholar
  17. Dee S, Emile-Geay J, Evans MN, Allam A, Steig EJ, Thompson DM (2015) PRYSM: an open-source framework for PRoxY system modeling, with applications to oxygen-isotope systems. J Adv Mod Earth Sys 7:1220–1247.  https://doi.org/10.1002/2015MS000447 CrossRefGoogle Scholar
  18. Deininger M, McDermott F, Mudelsee M, Werner M, Frank N, Mangini A (2017) Coherency of late holocene European speleothem δ18O records linked to North Atlantic Ocean circulation. Clim Dyn 49:595–618CrossRefGoogle Scholar
  19. Dong B, Sutton RT, Woollings T (2011) Changes of interannual NAO variability in response to greenhouse gases forcing. Clim Dyn 37:1621–1641CrossRefGoogle Scholar
  20. Efroymson MA (1960) Multiple regression analysis. In: Ralston A, Wilf HS (eds) Mathematical methods for digital computers. Wiley, New YorkGoogle Scholar
  21. Esper J, Frank D, Buentgen U, Verstege A, Luterbacher J, Xoplaki E (2007) Long-term drought severity variations in Morocco. Geophys Res Lett 34:L17702.  https://doi.org/10.1029/2007GL030844 CrossRefGoogle Scholar
  22. Evans MN, Tolwinski-Ward SE, Thompson DM, Anchukaitis KJ (2013) Applications of proxy system modeling in high resolution paleoclimatology. Quat Sci Rev 76:16–28.  https://doi.org/10.1016/j.quascirev.2013.05.024 CrossRefGoogle Scholar
  23. Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F (2006) Modification and preservation of environmental signals in speleothems. Earth-Sci Rev 75(1–4):105–153CrossRefGoogle Scholar
  24. Gamiz-Fortis SR, Pozo-Vazquez D, Esteban-Parra MJ, Castro-Dıez Y (2002) Spectral characteristics and predictability of the NAO assessed through singular spectral analysis. J Geophys Res 107(D23):4685.  https://doi.org/10.1029/2001JD001436 CrossRefGoogle Scholar
  25. García-Suáreza AM, Butler CJ, Baillie MGL (2009) Climate signal in tree-ring chronologies in a temperate climate: a multi-species approach. Dendrochronologia 27:183–198CrossRefGoogle Scholar
  26. Gilman DL, Fuglister FJ, Mitchell JM Jr (1963) On the power spectrum of ‘red noise’. J Atmos Sci 20(2):182–184CrossRefGoogle Scholar
  27. Gómez-Navarro JJ, Zorita E (2013) Atmospheric annular modes in simulations over the past millennium: no long-term response to external forcing. Geophys Res Lett 40:3232–3236.  https://doi.org/10.1002/grl.50628 CrossRefGoogle Scholar
  28. Gray LJ, Woollings TJ, Andrews M, Knight J (2016) Eleven-year solar cycle signal in the NAO and Atlantic/European blocking. Quart J Royal Meterol Soc 142:1890–1903CrossRefGoogle Scholar
  29. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  30. Hurrell JW, Deser C (2009) North Atlantic climate variability: The role of the North Atlantic Oscillation. J Marine Sys 78:28–41CrossRefGoogle Scholar
  31. Hurrell JW, van Loon H (1997) Decadal variations in climate associated with the North Atlantic Oscillation. Clim Change 36:301–326CrossRefGoogle Scholar
  32. Hurrell JW, Kushnir Y, Visbeck M, Ottersen G (2003) An overview of the North Atlantic Oscillation. In Hurrell JW, Kushnir Y, Otterson G, Visbeck MH (eds) The North Atlantic Oscillation. AGU Geophysical Monograph, New York, vol 134, pp1–35Google Scholar
  33. Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Clim 17:1433–1450CrossRefGoogle Scholar
  34. Jones PD, Davies TD, Lister DH, Slonosky V, Jonsson T, Barring L, Jonsson P, Maheras P, Kolyva-Machera F, Barriendos M, Martin-Vide J, Rodrigue R, Alcoforado MJ, Wanner H, Pfister C, Luterbacher J, Rickli R, Schuepbach E, Kaas E, Schmith T, Jacobeit J, Beck C (1999) Monthly mean pressure reconstructions for Europe for the 1780–1995 period. Int J Clim 19:347–364CrossRefGoogle Scholar
  35. Jones PD, Osborn TJ, Briffa KR (2003) Pressure-based measures of the North Atlantic Oscillation (NAO): a comparison and an assessment of changes in the strength of the NAO and in its influence on surface climate parameters. In Hurrell JW, Kushnir Y, Otterson G, Visbeck MH (eds) The North Atlantic Oscillation. AGU Geophysical Monograph, New York, vol 134, pp 51–62Google Scholar
  36. Kelley C, Ting MF, Seager R, Kushnir Y (2012) The relative contributions of radiative forcing and internal climate variability to the late 20th Century winter drying of the Mediterranean region. Clim Dyn 38(9–10):2001–2015CrossRefGoogle Scholar
  37. Lopez-Moreno JI, Vicente-Serrano SM (2008) Positive and negative phases of the wintertime North Atlantic Oscillation and drought occurrence over Europe: a multitemporal-scale approach. J Clim 21:1220–1243CrossRefGoogle Scholar
  38. Luterbacher J, Schmutz C, Gyalistras D, Xoplaki E, Wanner H (1999) Reconstruction of monthly NAO and EU indices back to AD 1675. Geophys Res Lett 26:2745–2748CrossRefGoogle Scholar
  39. Luterbacher J, Xoplaki E, Dietrich D, Jones PD, Davies TD, Portis D, Gonzalez-Rouco JF, von Storch H, Gyalistris D, Casty C, Wanner H (2002a) Extending North Atlantic Oscillation reconstructions back to 1500. Atmos Sci Lett 2:114–124.  https://doi.org/10.1006/asle.2001.0044 CrossRefGoogle Scholar
  40. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002b) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18:545–561CrossRefGoogle Scholar
  41. Mecking JV, Keenlyside NS, Greatbatch RJ (2014) Stochastically-forced multidecadal variability in the North Atlantic: a model study. Clim Dyn 43:271–288CrossRefGoogle Scholar
  42. Meko DM (1981) Applications of Box-Jenkins methods of time series analysis to the reconstruction of drought from tree rings. Dissertation, University of ArizonaGoogle Scholar
  43. Michel S, Swingedouw D, Chavent M, Ortega P, Mignot J, Khodri M (2018) Reconstructing climatic modes of variability from proxy records: sensitivity to the methodological approach. Geosci Model Dev Discuss.  https://doi.org/10.5194/gmd-2018-211 Google Scholar
  44. Olive DJ (2007) Prediction intervals for regression models. Comp Stat Data Anal 51:3115–3122CrossRefGoogle Scholar
  45. Ortega P, Lehner F, Swingedouw D, Masson-Delmotte V, Raible CC, Casado M, Yiou P (2015) A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 523:71–74.  https://doi.org/10.1038/nature14518 CrossRefGoogle Scholar
  46. Osborn TJ (2004) Simulating the winter North Atlantic Oscillation: the roles of internal variability and greenhouse gas forcing. Clim Dyn 22:605–623CrossRefGoogle Scholar
  47. Osborn TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Clim Dyn 15:685–702CrossRefGoogle Scholar
  48. Palmer JG, Cook E, Turney C, Allen K, Fenwick P, Cook B, O’Donnell A, Lough J, Grierson P, Baker P (2015) Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE 1500–2012) modulated by the Interdecadal Pacific Oscillation. Env Res Lett.  https://doi.org/10.1088/1748-9326/10/12/124002 Google Scholar
  49. Pederson N, Bell AR, Cook ER, Lall U, Devineni N, Seager R, Eggelston K, Vranes KJ (2013) Is an epic pluvial masking the water security of the greater New York City region? J Clim 26:1339–1354.  https://doi.org/10.1175/JCLI-D-11-00723.1 CrossRefGoogle Scholar
  50. Proctor CJ, Baker A, Barnes WL, Gilmour MA (2000) A thousand year speleothem proxy record of North Atlantic climate from Scotland. Clim Dyn 16(10–11):815–820CrossRefGoogle Scholar
  51. Rao MP, Cook ER, Cook BI, Palmer J, Uriarte M, Devineni N, Lall U, D’Arrigo RD, Woodhouse CA, Ahmed M (2018) Six centuries of Upper Indus Basin streamflow variability and its climatic drivers. Water Resourc Res.  https://doi.org/10.1029/2018WR023080 Google Scholar
  52. Rind D, Perlwitz J, Lonergan P, Lerner J (2005) AO/NAO response to climate change: 2. Relative importance of low and high latitude temperature changes. J Geophys Res 110:D12108.  https://doi.org/10.1029/2004JD005686 CrossRefGoogle Scholar
  53. Rodwell MJ, Rowell DP, Folland CK (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398:320–323CrossRefGoogle Scholar
  54. Rogers JC, van Loon H (1979) The seesaw in winter temperatures between Greenland and northern Europe. Part II: some oceanic and atmospheric effects in middle and high latitudes. Mon Wea Rev 107:509–519CrossRefGoogle Scholar
  55. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2012) Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci Mod Dev 5:185–191.  https://doi.org/10.5194/gmd-5-185-2012 CrossRefGoogle Scholar
  56. Schmutz C, Luterbacher J, Gyalistras D, Xoplaki E, Wanner H (2000) Can we trust proxy-based NAO index reconstructions? Geophys Res Lett 27:1135–1138CrossRefGoogle Scholar
  57. Smerdon JE, Cook BI, Cook ER, Seager R (2015) Bridging past and future climate across paleoclimatic reconstructions, observations, and models: A hydroclimate case study. J Clim 28(8):3212–3231CrossRefGoogle Scholar
  58. Srivastav RK, Simonovic SP (2015) Multi-site, multivariate weather generator using maximum entropy bootstrap. Clim Dyn 44:3431–3448CrossRefGoogle Scholar
  59. Stahle DW, Cook ER, Burnette DJ, Villanueva J, Cerano J, Burns JN, Griffin RD, Cook BI, Acuna R, Torbenson MCA, Sjezner P (2016) The Mexican drought atlas: tree-ring reconstructions of the soil moisture balance during the last pre-Hispanic, colonial, and modern eras. Quat Sci Rev 149:34–60CrossRefGoogle Scholar
  60. Stephenson DB, Wanner H, Bronnimann S, Luterbacheer J (2003) The history of scientific research on the North Atlantic Oscillation. In Hurrell JW, Kushnir Y, Otterson G, Visbeck MH (eds) The North Atlantic Oscillation. AGU Geophysical Monograph, New York, vol 134, pp 37–50Google Scholar
  61. Stockton CW, Glueck MF (1999) Long-term variability of the North Atlantic Oscillation (NAO). In: American Meteorological Society I0th Symposium on Global Change Studies, Dallas, Texas, pp 290–293Google Scholar
  62. Taylor KE. Stouffer RJ. Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meterol Soc 93:485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  63. Thiéblemont R, Matthes K, Omrani N-E, Kodera K, Hansen F (2015) Solar forcing synchronizes decadal North Atlantic climate variability. Nature Comm 6:8268.  https://doi.org/10.1038/ncomms9268 CrossRefGoogle Scholar
  64. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096CrossRefGoogle Scholar
  65. Tierney JE, Abram NJ, Anchukaitis KJ, Evans MN, Giry C, Kilbourne KH, Saenger CP, Wu HC, Zinke J (2015) Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography 30:226–252.  https://doi.org/10.1002/2014PA002717 CrossRefGoogle Scholar
  66. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meterol Soc 79(1):61–78CrossRefGoogle Scholar
  67. Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17CrossRefGoogle Scholar
  68. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic oscillation mode dominated the Medieval Climate Anomaly. Science 324:78–80.  https://doi.org/10.1126/science.1166349 CrossRefGoogle Scholar
  69. Truebe S, Ault TR, Cole JE (2010) A forward model of cave dripwater δ18O and application to speleothem records. IOP Conf Ser Earth Environ Sci.  https://doi.org/10.1088/1755-1315/9/1/012022 Google Scholar
  70. van Loon H, Rogers JC (1978) The seesaw in winter temperatures between Greenland and northern Europe. Part I: general description. Mon Wea Rev 106:296–310CrossRefGoogle Scholar
  71. Vinod HD (2006) Maximum entropy ensembles for time series inference in economics. J Asian Econ 17:955–978CrossRefGoogle Scholar
  72. Wahl E, Ammann C (2007) Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: examination of criticisms based on the nature and processing of proxy climate evidence. Clim Change 85:33–69.  https://doi.org/10.1007/s10584-006-9105-7 CrossRefGoogle Scholar
  73. Wallace J, Gutzler D (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Wea Rev 109:784–812CrossRefGoogle Scholar
  74. Wang W, Anderson BT, Kaufmann RK, Myneni RB (2006) The relation between the North Atlantic Oscillation and SSTs in the North Atlantic basin. J Clim 17:4752–4759CrossRefGoogle Scholar
  75. Wassenburg JA, Immenhauser A, Richter DK, Niedermayr A, Riechelmann S, Fietzke J, Scholz D, Jochum KP, Fohlmeister J, Schroder-Ritzrau A, Sabaoui A, Riechelmann DFC, Schneider L, Esper J (2013) Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic Oscillation during the Medieval Warm Period. Earth Planet Sci Lett 375:291–302CrossRefGoogle Scholar
  76. Wonnocott RJ, Wonnocott TH (1979) Econometrics, 2 ed. Wiley, HobokenGoogle Scholar
  77. Woollings T, Franzke C, Hodson DLR, Dong B, Barnes EA, Raible CC, Pinto JG (2015) Contrasting interannual and multidecadal NAO variability. Clim Dyn 45(1):539–556CrossRefGoogle Scholar
  78. Wunch C (1999) The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull Am Meteorol Soc 80(2):245–255CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Lamont-Doherty Earth ObservatoryPalisadesUSA
  2. 2.School of Geography and Development and Laboratory of Tree-Ring ResearchUniversity of ArizonaTucsonUSA
  3. 3.World Data Service for PaleoclimatologyNOAA National Centers for Environmental InformationBoulderUSA

Personalised recommendations