Advertisement

Climate Dynamics

, Volume 53, Issue 3–4, pp 1547–1565 | Cite as

Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations

  • Silvina A. SolmanEmail author
  • Josefina Blázquez
Article

Abstract

This study is aimed to assess the added value of Regional Climate Models (RCMs) with respect to their driving Global Climate Models (GCMs) focused on the behavior of precipitation over South America (SA) at different temporal scales. RCMs from the CORDEX experiments available for the South American domain at 0.44° resolution were used together with their driving GCMs from the Coupled Models Intercomparison Project (CMIP5) dataset for the period 1979–2005. Observed data from the CPC-Global Unified Gauge-Based Analysis of Daily Precipitation was used to evaluate the simulations. Precipitation data were first filtered to retain the variability at the interannual, intraseasonal and synoptic timescales. Statistics of the daily precipitation data were also evaluated, including percentiles of light, moderate, heavy and extreme precipitation events. The added value was quantified in terms of two metrics accounting for the spatial distribution of the particular precipitation feature and the M-skill score, representing a measure of normalized square errors. Added value is strongly dependent on the RCM-GCM pair evaluated. RCMs with an overall good performance add value over their driving GCM for all metrics analyzed, from the climatological seasonal mean to the intensity of extreme events. The added value arises more clearly as long as the smaller the scale of the precipitation feature assessed is.

Keywords

Added value Precipitation Temporal scale South America Regional climate modeling 

Notes

Acknowledgements

The authors appreciate the comments and suggestions raised by two anonymous reviewers who helped improving the manuscript. This work was supported by UBACYT2014 Grant 20020130200233BA and UBACYT2018 Grant 20020170100117BA. The authors thank CMIP5 and CORDEX for making available the simulation data used in this work. CPC Global Unified Precipitation data was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at https://www.esrl.noaa.gov/psd/.

References

  1. Alvarez MS, Vera CS, Kiladis GN (2017) MJO modulating the activity of the leading mode of intraseasonal variability in South America. Atmosphere.  https://doi.org/10.3390/atmos8120232 Google Scholar
  2. Asadieh B, Krakauer N (2015) Global trends in extreme precipitation: climate models versus observations. Hydrol Earth Syst Sci 19:877–891CrossRefGoogle Scholar
  3. Berbery H, Vera CS (1996) Characteristics of the Southern Hemisphere winter storm track with filtered and unfiltered data. J Atmos Sci 53:468–481CrossRefGoogle Scholar
  4. Blazquez J, Solman SA (2018) Fronts and precipitation in CMIP5 models for the austral winter of the SouthernHemisphere. Clim Dyn 50:2705–2717.  https://doi.org/10.1007/s00382-017-3765-z CrossRefGoogle Scholar
  5. Blázquez J, Solman SA (2016) Intraseasonal variability of wintertime frontal activity and its relationship with rainfall variability over South America. Clim Dyn 46:2327–2336.  https://doi.org/10.1007/s00382-015-2704-0 CrossRefGoogle Scholar
  6. Blázquez J, Solman SA (2017) Interannual variability of the frontal activity in the Southern Hemisphere: relationship with atmospheric circulation and precipitation over southern South America. Clim Dyn 48:2569–2579.  https://doi.org/10.1007/s00382-016-3223-3 CrossRefGoogle Scholar
  7. Boers N, Bookhagenm B, Marengo J, Marwan N, von Storch J, Kuths J (2015) Extreme rainfall of the South American monsoon system: a dataset comparison using complex networks. J of Climate 28:1031–2056.  https://doi.org/10.1175/JCLI-D-14-00340.1 CrossRefGoogle Scholar
  8. Chylek P, Li J, Dubey MK, Wang M, Lesins G (2011) Observed and model simulated 20th century Arctic temperature variability: Canadian Earth System Model CanESM2. Atmos Chem Phys Discuss 11(8):22893–22907CrossRefGoogle Scholar
  9. De Sales F, Xue Y (2010) Assessing the dynamic downscaling ability over South America using the intensity-scale verification technique. Int J Climatol 31:1254–1263Google Scholar
  10. De Oliveira CP, Ambrizzi T, Aimola L (2016) Influence of intraseasonal variability on precipitation in northern South America during the winter season. Int J Climatol 37:2177–2186.  https://doi.org/10.1002/joc.4845 CrossRefGoogle Scholar
  11. Di Luca A, de Elia R, Laprise R (2012) Potential for added value in precipitation simulated by high resolution nested regional climate models and observations. Clim Dyn 38:1229–1247CrossRefGoogle Scholar
  12. Di Luca A, de Elía R, Laprise R (2013) Potential for added value in temperature simulated by high-resolution nested RCMs in present climate and in the climate change signal. Clim Dyn 40:443–464.  https://doi.org/10.1007/s00382-012-1415-z CrossRefGoogle Scholar
  13. Di Luca A, Argüeso D, Evans JP, de Elía R, Laprise R (2016) Quantifying the overall added value of dynamical downscaling and the contribution from different spatial scales. J Geophys Res Atmos 121:1575–1590.  https://doi.org/10.1002/2015JD024009 CrossRefGoogle Scholar
  14. Diaconescu EP, Laprise R (2013) Can added value be expected in RCM-simulated large scales? Clim Dyn 41:1769–1800CrossRefGoogle Scholar
  15. Diaz L, Vera C (2017) Austral summer precipitation interannual variability and trends over Southeastern South America in CMIP5 models. Int J Climatol 37:681–695.  https://doi.org/10.1002/joc.5031 CrossRefGoogle Scholar
  16. Duchon CE (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022.  https://doi.org/10.1175/1520-0450 CrossRefGoogle Scholar
  17. Falco M, Carril AF, Menéndez CG, Zaninelli P, Li L (2018) Assessment of CORDEX simulations over South America: added value on seasonal climatology and resolution considerations.  https://doi.org/10.1007/s00382-018-4412-z
  18. Fantini A, Raffaele F, Torma C, Bacer S, Coppola E, Giorgi F, Ahrens B, Dubois C, Sánchez E, Verdechia M (2018) Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Clim Dyn 51:877–900.  https://doi.org/10.1007/s00382-016-3453-4 CrossRefGoogle Scholar
  19. Feser F (2006) Enhanced detectability of added value in limited area model results separated into different spatial scales. Mon Weather Rev 134:2180–2197CrossRefGoogle Scholar
  20. Garreaud RD, Vuille M, Compagnucci R, Marengo J. Palaeogeography (2009) Present-day South American climate. Palaeoclimatol Palaeoecol 281:180–195.  https://doi.org/10.1016/j.palaeo.2007.10.032 CrossRefGoogle Scholar
  21. Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490CrossRefGoogle Scholar
  22. Giorgi F, Brodeur S, Bates GT (1994) Regional climate change scenarios over the United States produced with a nested regional climate model. J Clim 7:375–399CrossRefGoogle Scholar
  23. Giorgi F et al (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change.  https://doi.org/10.1007/s10584-014-1117-0 Google Scholar
  24. Grimm AM (2011) Interannual climate variability in South America: impacts on seasonal precipitation, extreme events, and possible effects of climate change. Stoch Environ Res Risk Asses 25:537–554.  https://doi.org/10.1007/s00477-010-0420-1 CrossRefGoogle Scholar
  25. Gulizia C, Camilloni I (2015) Comparative analysis of the ability of a set of CMIP3 and CMIP5 global climate models to represent precipitation in South America. Int J of Climatol 35:583–595.  https://doi.org/10.1002/joc.4005 CrossRefGoogle Scholar
  26. Hazeleger W, Severijns C, Semmler T, Ştefănescu S, Yang S, Wang X, Wyser K, Dutra E, Baldasano JM (2010) EC-Earth: a seamless earth-system prediction approach in action. Bull Am Meteorol Soc 91(10):1357–1363CrossRefGoogle Scholar
  27. Jacob D, Elizalde A, Haensler A, Hagemann S, Kumar P, Podzun R, Rechid D, Remedio AR, Saeed F, Sieck K, Teichmann C, Wilhelm C (2012) Assessing the Transferability of the regional climate model REMO to di erent coordinated regional climate downscal- ing experiment (CORDEX) regions. Atmosphere 3(4):181–199CrossRefGoogle Scholar
  28. Jacob D et al (2014) EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg Environ Change 14:563–578.  https://doi.org/10.1007/s10113-013-0499-2 CrossRefGoogle Scholar
  29. Kupiainen M, Jansson C, Samuelsson P, Jones C (2014) Rossby Centre regional atmospheric model, RCA4. Rossby Center News LetterGoogle Scholar
  30. Laprise R et al (2008) Challenging some tenets of Regional Climate Modelling. Meteorol Atmos Phys 100:3–22CrossRefGoogle Scholar
  31. Leung LR, Qian Y, Bian X (2003) Hydroclimate of the Western United States Based on Observations and Regional Climate Simulations of 1981–2000. Part I: Seasonal Statistics. J Clim 16:1892–1911CrossRefGoogle Scholar
  32. Liebmann B, Mechoso CR (2011) The South American Monsoon System. The global monsoon system. In: Chang C-P, Ding Y, Lau N-C (eds) The global monsoon system: research and forecast, 2nd edn. World Scientific Publication Company, Singapore, pp 137–157CrossRefGoogle Scholar
  33. Lucas-Picher P, Laprise R, Winger K (2017) Evidence of added value in North American regional climate model hindcast simulations using ever-increasing horizontal resolutions. Clim Dyn 48:2611–2633.  https://doi.org/10.1007/s00382-016-3227-z CrossRefGoogle Scholar
  34. Manzanas R, Gutiérrez JM, Fernández J, van Meijgaard E, Calmanti S, Magariño ME, Cofiño AS, Herrera S (2018) Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: added value for user applications. Climate Services 9:44–56CrossRefGoogle Scholar
  35. Prein AF et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects and challenges. Rev Geophys 53:323–361CrossRefGoogle Scholar
  36. Rasmussen KL, Houze RA Jr (2016) Convective initiation near the Andes in subtropical South America. Mon Wea Rev 144:2351–2374.  https://doi.org/10.1175/MWR-D-15-0058.1 CrossRefGoogle Scholar
  37. Rasmussen KL, Chaplin MM, Zuluaga MD, Houze RA Jr (2016) Contribution of extreme convective storms to rainfall in South America. J Hydrometeorol 17:353–367CrossRefGoogle Scholar
  38. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711.  https://doi.org/10.1007/s00382-009-0607-7 CrossRefGoogle Scholar
  39. Rojas M (2006) Multiply nested regional climate simulation for southern South America: Sensitivity to model resolution. Mon Weather Rev 134:2208–2223CrossRefGoogle Scholar
  40. Romatschke U, Houze RA (2013) Characteristics of precipitating convective systems accounting for the summer rainfall of tropical and subtropical South America. J Hydrometeorol 14:25–46CrossRefGoogle Scholar
  41. Rummukainen M (2016) Added value in regional climate modeling. WIREs Clim Change 7:145–159.  https://doi.org/10.1002/wcc.378 CrossRefGoogle Scholar
  42. Sánchez E, Solman S, Remedio ARC, Berbery H, Samuelsson P, da Rocha RP, Mourão C, Li L, Marengo J, de Castro M, Jacob D (2015) Regional climate modelling in CLARIS-LPB: a concerted approach towards twentyfirst century projections of regional temperature and precipitation over South America. Clim Dyn 45:2193–2212.  https://doi.org/10.1007/s00382-014-2466-0 CrossRefGoogle Scholar
  43. Singh S, Ghosh S, Sahana AS, Vittal H, Karmakar S (2017) Do dynamic regional models add value to the global model projections of Indian monsoon? Cim Dyn 48:1375–1397.  https://doi.org/10.1007/s00382-016-3147-y Google Scholar
  44. Siqueira JR, Machado LAT (2004) Influence of the frontal systems on the day-to-day convection variability over South America. J Clim 17:1754–1766CrossRefGoogle Scholar
  45. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Wang W, Powers J (2008) A description of the advanced research WRF version 3. Technical Report. NCARGoogle Scholar
  46. Solman S, Orlanski I (2010) Subpolar high anomaly preconditioning precipitation over South America. J of Atmos Sci 67:1526–1542.  https://doi.org/10.1175/2009JAS3309.1 CrossRefGoogle Scholar
  47. Solman SA, Nuñez MN, Cabré MF (2008) Regional climate change experiments over southern South America. I: present climate. Clim Dyn 30:533.  https://doi.org/10.1007/s00382-007-0304-3 CrossRefGoogle Scholar
  48. Solman S, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg N, Remedio ARC, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: Model performance and uncertainties. Clim Dyn 41:1139–1157.  https://doi.org/10.1007/s00382-013-1667-2) CrossRefGoogle Scholar
  49. Stevens B, Giorgetta M, Esch M, Mauritsen T, Crueger T, Rast S, Salz- mann M, Schmidt H, Bader JJ, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Syst 5(2):146–172CrossRefGoogle Scholar
  50. Torma CS, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain-Precipitation over the Alps. J Geophys Res Atmos 120: 3957–3972.  https://doi.org/10.1002/2014JD022781 CrossRefGoogle Scholar
  51. Vera CS, Alvarez MS, Gonzalez PLM, Liebmann B, Kiladis GN (2017) Seasonal cycle of precipitation variability in South America on intraseasonal timescales. Clim Dyn.  https://doi.org/10.1007/s00382-017-3994-1 Google Scholar
  52. Watterson IG, Bathols J, Heady C (2014) What influences the skill of climate models over the continents? Bull Amer Meteor Soc 95:689–700.  https://doi.org/10.1175/BAMS-D-12-00136.1 CrossRefGoogle Scholar
  53. Xie P, Yatagai A, Chen M, Hayasaka T, Fukushima Y, Liu C, Yang S (2007) A gauge-based analysis of daily precipitation over East Asia. J Hydrometeorol 8:607–626.  https://doi.org/10.1175/JHM583.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Ciencias de la Atmósfera y los Océanos DCAO-FCEN-UBA, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Centro de Investigaciones del Mar y la Atmósfera CIMA/CONICET-UBA, CONICET-Universidad de Buenos AiresBuenos AiresArgentina
  3. 3.Facultad de Ciencias Astronómicas y GeofísicasUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations