Advertisement

Climate Dynamics

, Volume 53, Issue 5–6, pp 2807–2824 | Cite as

Applying the Community Ice Sheet Model to evaluate PMIP3 LGM climatologies over the North American ice sheets

  • Jay R. AlderEmail author
  • Steven W. Hostetler
Article

Abstract

We apply the Community Ice Sheet Model (CISM2) to determine the extent to which the Last Glacial Maximum (LGM) temperature and precipitation climatologies from the Paleoclimate Modelling Intercomparison Project 3 (PMIP3) simulations support the large North American ice sheets that were prescribed as a boundary condition. We force CISM2 with eight PMIP3 general circulation models (GCMs), and an additional model, GENMOM. Seven GCMs simulate LGM climatologies that support positive surface mass balances of the Laurentide and Cordilleran ice sheets (LIS, CIS) consistent with where ice was prescribed in the GCMs. Two GCMs simulate July temperatures that are too warm to support the ice sheets. Four of the nine CISM2 simulations support ice sheets in Beringia, in absence of prescribed ice in the driving GCMs and in disagreement with geologic evidence that indicates the area remained ice-free during the LGM. We test the sensitivity of our results to a range of snow and ice positive degree-day factors, daily, monthly, and climatological temperature and precipitation inputs, and we evaluate the role of albedo and snow in the simulations. Areas with perennial snow in the GCM simulations correspond well to the presence of ice in the CISM2 simulation. GCMs with unrealistically low surface albedos over the LIS yield simulations that fail to simulate realistic ice sheets.

Keywords

PMIP3 LGM Model evaluation CISM2 Ice sheet modeling 

Notes

Acknowledgements

We thank William Lipscomb, Matthew Hoffman, Stephen Price, Gunter Leguy and the UCAR and LANL CISM team for help with the ice sheet model. Lauren Gregoire provided the North American domain and configuration files. We acknowledge the modeling centers that contributed LGM simulations to the PMIP3/CMIP5 archive. Maureen Walczak and the reviewers provided helpful feedback that improved our manuscript.

Author Contributions

Jay Alder performed the ice sheet modeling and analysis. Steve Hostetler helped guide the experimental design and interpret the results. Both authors co-wrote the paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

382_2019_4663_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2041 KB)

References

  1. Abe-Ouchi A, Segawa T, Saito F (2007) Climatic conditions for modelling the Northern Hemisphere ice sheets throughout the ice age cycle. Clim Past 3:423–438.  https://doi.org/10.5194/cp-3-423-2007 CrossRefGoogle Scholar
  2. Abe-Ouchi A, Saito F, Kawamura K, Raymo ME, Okuno J, Takahashi K, Blatter H (2013) Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500:190–193.  https://doi.org/10.1038/nature12374 CrossRefGoogle Scholar
  3. Abe-Ouchi A, Saito F, Kageyama M, Braconnot P, Harrison SP, Lambeck K, Otto-Bliesner BL, Peltier WR, Tarasov L, Peterschmitt JY, Takahashi K (2015) Ice-sheet configuration in the CMIP5/pmip3 last glacial maximum experiments. Geosci Model Dev 8:3621–3637.  https://doi.org/10.5194/gmd-8-3621-2015 CrossRefGoogle Scholar
  4. Alder JR, Hostetler SW (2015) Global climate simulations at 3000-year intervals for the last 21 000 years with the GENMOM coupled atmosphere–ocean model. Clim Past 11:449–471.  https://doi.org/10.5194/cp-11-449-2015 CrossRefGoogle Scholar
  5. Alder JR, Hostetler SW (2019) Data release for applying the community ice sheet model to evaluate PMIP3 LGM climatologies over the North American ice sheets (ver. 2.0, February 2019). U.S. Geological Survey data release.  https://doi.org/10.5066/F7ZK5FK2
  6. Alder JR, Hostetler SW, Pollard D, Schmittner A (2011) Evaluation of a present-day climate simulation with a new coupled atmosphere-ocean model GENMOM. Geosci Model Dev 4:69–83.  https://doi.org/10.5194/gmd-4-69-2011 CrossRefGoogle Scholar
  7. Argus DF, Peltier WR, Drummond R, Moore AW (2014) The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophys J Int 198:537–563.  https://doi.org/10.1093/gji/ggu140 CrossRefGoogle Scholar
  8. Bahadory T, Tarasov L (2018) LCice 1.0—a generalized Ice Sheet System Model coupler for LOVECLIM version 1.3: description, sensitivities, and validation with the Glacial Systems Model (GSM version D2017.aug17). Geosci Model Dev 11:3883–3902.  https://doi.org/10.5194/gmd-11-3883-2018 CrossRefGoogle Scholar
  9. Bao Q, Wu G, Liu Y, Yang J, Wang Z, Zhou T (2010) An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv Atmos Sci 27:1131–1142.  https://doi.org/10.1007/s00376-010-9177-1 CrossRefGoogle Scholar
  10. Bao Q, Lin P, Zhou T, Liu Y, Yu Y, Wu G, He B, He J, Li L, Li J, Li Y, Liu H, Qiao F, Song Z, Wang B, Wang J, Wang P, Wang X, Wang Z, Wu B, Wu T, Xu Y, Yu H, Zhao W, Zheng W, Zhou L (2013) The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2. Adv Atmos Sci 30:561–576.  https://doi.org/10.1007/s00376-012-2113-9 CrossRefGoogle Scholar
  11. Bartlein PJ, Harrison SP, Brewer S, Connor S, Davis BAS, Gajewski K, Guiot J, Harrison-Prentice TI, Henderson A, Peyron O, Prentice IC, Scholze M, Seppä H, Shuman B, Sugita S, Thompson RS, Viau AE, Williams J, Wu H (2011) Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim Dyn 37:775–802.  https://doi.org/10.1007/s00382-010-0904-1 CrossRefGoogle Scholar
  12. Bauer E, Ganopolski A (2014) Sensitivity simulations with direct shortwave radiative forcing by aeolian dust during glacial cycles. Clim Past 10:1333–1348.  https://doi.org/10.5194/cp-10-1333-2014 CrossRefGoogle Scholar
  13. Bonelli S, Charbit S, Kageyama M, Woillez MN, Ramstein G, Dumas C, Quiquet A (2009) Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle. Clim Past 5:329–345.  https://doi.org/10.5194/cp-5-329-2009 CrossRefGoogle Scholar
  14. Braconnot P, Otto-Bliesner BL, Harrison S, Joussaume S, Peterschmitt JY, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet T, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre MF, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim Past 3:261–277.  https://doi.org/10.5194/cp-3-261-2007 CrossRefGoogle Scholar
  15. Braconnot P, Harrison SP, Kageyama M, Bartlein PJ, Masson-Delmotte V, Abe-Ouchi A, Otto-Bliesner BL, Zhao Y (2012) Evaluation of climate models using palaeoclimatic data. Nat Geosci 2:417–424.  https://doi.org/10.1038/nclimate1456 CrossRefGoogle Scholar
  16. Briggs RD, Pollard D, Tarasov L (2014) A data-constrained large ensemble analysis of Antarctic evolution since the Eemian. Quat Sci Rev 103:91–115.  https://doi.org/10.1016/j.quascirev.2014.09.003 CrossRefGoogle Scholar
  17. Charbit S, Ritz C, Ramstein G (2002) Simulations of Northern Hemisphere ice-sheet retreat: sensitivity to physical mechanisms involved during the Last Deglaciation. Quat Sci Rev 21:243–265.  https://doi.org/10.1016/S0277-3791(01)00093-2 CrossRefGoogle Scholar
  18. Charbit S, Ritz C, Philippon G, Peyaud V, Kageyama M (2007) Numerical reconstructions of the Northern Hemisphere ice sheets through the last glacial-interglacial cycle. Clim Past 3:15–37.  https://doi.org/10.5194/cp-3-15-2007 CrossRefGoogle Scholar
  19. COHMAP Members (1988) Climatic changes of the last 18,000 years—observations and model simulations. Science 241:1043–1052CrossRefGoogle Scholar
  20. Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40:2123–2165.  https://doi.org/10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  21. Dyke AS (2004) An outline of North American deglaciation with emphasis on central and northern Canada. In: Ether J, Gibbard PL (eds) Quaternary glaciations-extent and chronology—Part II: North America, vol 2. Elsevier, pp 373–424.  https://doi.org/10.1016/S1571-0866(04)80209-4
  22. Dyke AS, Prest VK (1987) Late Wisconsinan and Holocene History of the Laurentide Ice Sheet. Geogr Phys Quat 41:237–263.  https://doi.org/10.7202/032681ar CrossRefGoogle Scholar
  23. Ehlers J, Gibbard PL, Hughes PD (2011) Quaternary glaciations—extent and chronology: a closer look, 1st edn. Elsevier, AmsterdamGoogle Scholar
  24. Flato GM, Marotzke J, Abiodun M, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest CE, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013—the physical science basis. Cambridge University Press, Cambridge, pp 1–126Google Scholar
  25. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-L, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991.  https://doi.org/10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  26. Gregoire LJ, Payne AJ, Valdes PJ (2012) Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487:219–222.  https://doi.org/10.1038/nature11257 CrossRefGoogle Scholar
  27. Gregoire LJ, Valdes PJ, Payne AJ (2015) The relative contribution of orbital forcing and greenhouse gases to the North American deglaciation. Geophys Res Lett 42:9970–9979.  https://doi.org/10.1002/2015GL066005 CrossRefGoogle Scholar
  28. Gregoire LJ, Otto-Bliesner B, Valdes PJ, Ivanovic R (2016) Abrupt Bølling warming and ice saddle collapse contributions to the Meltwater Pulse 1a rapid sea level rise. Geophys Res Lett 43:9130–9137.  https://doi.org/10.1002/2016GL070356 CrossRefGoogle Scholar
  29. Hagdorn MKM (2003) Reconstruction of the past and forecast of the future European and British ice sheets and associated sea level change. In: G Boulton, N Hulton (eds) University of Edinburgh, College of Science and Engineering, School of GeoScienceGoogle Scholar
  30. Hargreaves JC, Annan JD, Ohgaito R, Paul A, Abe-Ouchi A (2013) Skill and reliability of climate model ensembles at the Last Glacial Maximum and mid-Holocene. Clim Past 9:811–823.  https://doi.org/10.5194/cp-9-811-2013 CrossRefGoogle Scholar
  31. Harrison SP, Bartlein PJ, Brewer S, Prentice IC, Boyd M, Hessler I, Holmgren K, Izumi K, Willis K (2014) Climate model benchmarking with glacial and mid-Holocene climates. Clim Dyn 43:671–688.  https://doi.org/10.1007/s00382-013-1922-6 CrossRefGoogle Scholar
  32. Harrison SP, Bartlein PJ, Izumi K, Li G, Annan J, Hargreaves J, Braconnot P, Kageyama M (2015) Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat Geosci 5:735–743.  https://doi.org/10.1038/nclimate2649 CrossRefGoogle Scholar
  33. Harrison SP, Bartlein PJ, Prentice IC (2016) What have we learnt from palaeoclimate simulations? J Quat Sci 31:363–385.  https://doi.org/10.1002/jqs.2842 CrossRefGoogle Scholar
  34. Heinemann M, Timmermann A, Timm OE, Saito F, Abe-Ouchi A (2014) Deglacial ice sheet meltdown: orbital pacemaking and CO2 effects. Clim Past 10:1567–1579.  https://doi.org/10.5194/cp-10-1567-2014 CrossRefGoogle Scholar
  35. Joussaume S, Taylor KE, Braconnot P, mitchell Kutzbach J, Harrison JE, Prentice SP, Broccoli IC, Abe-Ouchi AJ, Bartlein A, Bonfils PJ, Dong C, Guiot B, Herterich J, Hewitt K, Jolly CD, Kim D, Kislov JW, Kitoh A, Loutre A, Masson MF, McAvaney V, McFarlane B, de Noblet N, Peltier N, Peterschmitt WR, Pollard JY, Rind D, Royer D, Schlesinger JF, Syktus ME, Thompson J, Valdes SL, Vettoretti P, Webb G, Wyputta RS U (1999) Monsoon changes for 6000 years ago: Results of 18 simulations from the Paleoclimate Modeling Intercomparison Project (PMIP). Geophys Res Lett 26:859–862CrossRefGoogle Scholar
  36. Koenig SJ, Dolan AM, de Boer B, Stone EJ, Hill DJ, DeConto RM, Abe-Ouchi A, Lunt DJ, Pollard D, Quiquet A, Saito F, Savage J, van de Wal R (2015) Ice sheet model dependency of the simulated Greenland Ice Sheet in the mid-Pliocene. Clim Past 11:369–381CrossRefGoogle Scholar
  37. Krinner G, Boucher O, Balkanski Y (2006) Ice-free glacial northern Asia due to dust deposition on snow. Clim Dyn 27:613–625.  https://doi.org/10.1007/s00382-006-0159-z CrossRefGoogle Scholar
  38. Lambeck K, Rouby H, Purcell A, Sun Y, Sambridge M (2014) Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. P Natl Acad Sci USA 111:15296–15303.  https://doi.org/10.1073/pnas.1411762111 CrossRefGoogle Scholar
  39. Lambert F, Kug J-S, Park RJ, Mahowald N, Winckler G, Abe-Ouchi A, O ‘ishi R, Takemura T, Lee J-H (2013) The role of mineral-dust aerosols in polar temperature amplification. Nat Geosci 3:487–491.  https://doi.org/10.1038/nclimate1785 CrossRefGoogle Scholar
  40. Laske G, Masters G (1997) A global digital map of sediment thickness. Eos Trans AGU 78(46):F483 (Abstract S41E-01) Google Scholar
  41. Licciardi JM, Clark PU, Jenson JW, Macayeal DR (1998) Deglaciation of a soft-bedded Laurentide Ice Sheet. Quat Sci Rev 17:427–448.  https://doi.org/10.1016/S0277-3791(97)00044-9 CrossRefGoogle Scholar
  42. Lipscomb WH, Fyke JG, Vizcaino M, Sacks WJ, Wolfe J, Vertenstein M, Craig A, Kluzek E, Lawrence DM (2013) Implementation and initial evaluation of the glimmer community ice sheet model in the community earth system model. 26:7352–7371.  https://doi.org/10.1175/JCLI-D-12-00557.1
  43. Lunt DJ, Foster GL, Haywood AM, Stone EJ (2008) Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454:1102–1105.  https://doi.org/10.1038/nature07223 CrossRefGoogle Scholar
  44. Marshall SJ, Tarasov L, Clarke GKC, Peltier WR (2000) Glaciological reconstruction of the Laurentide Ice Sheet: physical processes and modelling challenges. Can J Earth Sci 37:769–793.  https://doi.org/10.1139/e99-113 CrossRefGoogle Scholar
  45. Marshall SJ, James TS, Clarke GKC (2002) North American Ice Sheet reconstructions at the Last Glacial Maximum. Quat Sci Rev 21:175–192.  https://doi.org/10.1016/S0277-3791(01)00089-0 CrossRefGoogle Scholar
  46. Nowicki SMJ, Payne A, Larour E, Seroussi H, Goelzer H, Lipscomb W, Gregory J, Abe-Ouchi A, Shepherd A (2016) Ice Sheet Model Intercomparison Project (ISMIP6) contribution to CMIP6. Geosci Model Dev 9:4521–4545.  https://doi.org/10.5194/gmd-9-4521-2016 CrossRefGoogle Scholar
  47. Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last Glacial Maximum and Holocene climate in CCSM3. J Clim 19:2526–2544.  https://doi.org/10.1175/Jcli3748.1 CrossRefGoogle Scholar
  48. Paterson WSB, Budd WF (1982) Flow parameters for ice sheet modeling. Cold Reg Sci Technol 6:175–177CrossRefGoogle Scholar
  49. Patton H, Hubbard A, Andreassen K, Winsborrow M, Stroeven AP (2016) The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late Weichselian climatic and oceanic forcing. Quat Sci Rev 153:97–121.  https://doi.org/10.1016/j.quascirev.2016.10.009 CrossRefGoogle Scholar
  50. Peltier WR (1994) Ice-age paleotopography. Science 265:195–201.  https://doi.org/10.1126/science.265.5169.195 CrossRefGoogle Scholar
  51. Peltier WR (1998) Postglacial variations in the level of the sea: Implications for climate dynamics and solid-Earth geophysics. Rev Geophys 36:603–689.  https://doi.org/10.1029/98RG02638 CrossRefGoogle Scholar
  52. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age earth: the ice-5G (VM2) model and grace. Annu Rev Earth Planet Sci 32:111–149.  https://doi.org/10.1146/annurev.earth.32.082503.144359 CrossRefGoogle Scholar
  53. Peltier WR, Argus DF, Drummond R (2015) Space geodesy constrains ice age terminal deglaciation: the global ICE-6G_C (VM5a) model. J Geophys Res Solid Earth 120:450–487.  https://doi.org/10.1002/2014JB011176 CrossRefGoogle Scholar
  54. Pinot S, Ramstein G, Harrison SP, Prentice IC, Guiot J, Stute M, Joussaume S (1999) Tropical paleoclimates at the Last Glacial Maximum: comparison of Paleoclimate Modeling Intercomparison Project (PMIP) simulations and paleodata. Clim Dyn 15:857–874CrossRefGoogle Scholar
  55. Pollard D (2000) Comparisons of ice-sheet surface mass budgets from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Global Planet Change 24:79–106.  https://doi.org/10.1016/S0921-8181(99)00071-5 CrossRefGoogle Scholar
  56. Price S, Lipscomb WH, Hoffman M, Hagdorn M, Payne T, hebeler F, kennedy JH (2015) Community Ice Sheet Model (CISM) v2.0.5 Documentation. https://cism.github.io/data/cism_documentation_v2_0.pdf. Accessed 9 Apr 2018
  57. Reeh N (1991) Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 59:113–128Google Scholar
  58. Roberts WHG, Payne AJ, Valdes PJ (2016) The role of basal hydrology in the surging of the Laurentide Ice Sheet. Clim Past 12:1601–1617.  https://doi.org/10.5194/cp-12-1601-2016 CrossRefGoogle Scholar
  59. Rogozhina I, Rau D (2014) Vital role of daily temperature variability in surface mass balance parameterizations of the Greenland Ice Sheet. Cryosphere 8:575–585.  https://doi.org/10.5194/tc-8-575-2014 CrossRefGoogle Scholar
  60. Rutt IC, Hagdorn M, Hulton NRJ, Payne AJ (2009) The Glimmer community ice sheet model. J Geophys Res doi.  https://doi.org/10.1029/2008JF001015 CrossRefGoogle Scholar
  61. Schmidt GA, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S, Ruedy R, Hansen JE, Aleinov I, Bell N, Bauer M, Bauer S, Cairns B, Canuto V, Cheng Y, Del Genio A, Faluvegi G, Friend AD, Hall TM, Hu Y, Kelley M, Kiang NY, Koch D, Lacis AA, Lerner J, Lo KK, Miller RL, Nazarenko L, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Russell GL, Sato M, Shindell DT, Stone PH, Sun S, Tausnev N, Thresher D, Yao M-S (2006) Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J Clim 19:153–192.  https://doi.org/10.1175/JCLI3612.1 CrossRefGoogle Scholar
  62. Schmittner A, Silva TAM, Fraedrich K, Kirk E, Lunkeit F (2011) Effects of mountains and ice sheets on global ocean circulation. J Clim 24:2814–2829.  https://doi.org/10.1175/2010jcli3982.1 CrossRefGoogle Scholar
  63. Stone EJ, Lunt DJ, Rutt IC, Hanna E (2010) Investigating the sensitivity of numerical model simulations of the modern state of the Greenland ice-sheet and its future response to climate change. Cryosphere 4:397–417.  https://doi.org/10.5194/tc-4-397-2010 CrossRefGoogle Scholar
  64. Stone EJ, Lunt DJ, Annan JD, Hargreaves JC (2013) Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise. Clim Past 9:621–639.  https://doi.org/10.5194/cp-9-621-2013 CrossRefGoogle Scholar
  65. Stuhne GR, Peltier WR (2015) Reconciling the ICE-6G_C reconstruction of glacial chronology with ice sheet dynamics: the cases of Greenland and Antarctica. J Geophys Res Earth Surf 120:1841–1865.  https://doi.org/10.1002/2015JF003580 CrossRefGoogle Scholar
  66. Stuhne GR, Peltier WR (2017) Assimilating the ICE-6G_C Reconstruction of the latest quaternary ice age cycle into numerical simulations of the Laurentide and Fennoscandian Ice Sheets. J Geophys Res Earth Surf 122:2324–2347.  https://doi.org/10.1002/2017JF004359 CrossRefGoogle Scholar
  67. Tarasov L, Peltier WR (2004) A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quat Sci Rev 23:359–388CrossRefGoogle Scholar
  68. Tarasov L, Richard Peltier W (2002) Greenland glacial history and local geodynamic consequences. Geophys J Int 150:198–229.  https://doi.org/10.1046/j.1365-246X.2002.01702.x CrossRefGoogle Scholar
  69. Tarasov L, Dyke AS, Neal RM, Peltier WR (2012) A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet Sci Lett 315–316:30–40.  https://doi.org/10.1016/j.epsl.2011.09.010 CrossRefGoogle Scholar
  70. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498.  https://doi.org/10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  71. Ullman DJ, Carlson AE, Anslow FS, LeGrande AN, Licciardi JM (2015) Laurentide ice-sheet instability during the last deglaciation. Nat Geosci 8:534–537.  https://doi.org/10.1038/ngeo2463 CrossRefGoogle Scholar
  72. Voldoire A, Sanchez-Gomez E, Salas y Melia D, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, Chevallier M, Deque M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121.  https://doi.org/10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  73. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4:845–872.  https://doi.org/10.5194/gmd-4-845-2011 CrossRefGoogle Scholar
  74. Wekerle C, Colleoni F, Näslund J-O, Brandefelt J, Masina S (2016) Numerical reconstructions of the penultimate glacial maximum Northern Hemisphere ice sheets: sensitivity to climate forcing and model parameters. J Glaciol 62:607–622.  https://doi.org/10.1017/jog.2016.45 CrossRefGoogle Scholar
  75. Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka TY, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute-Earth System 820 Model v1 (MRI-ESM1)—model description. Meteorological Research Institute, IbarakiGoogle Scholar
  76. Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, MIZUTA R, Yabu S, Obata A, Nakano H, KOSHIRO T, Ose T, Kitoh A (2012) A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 --Model Description and Basic Performance. JMSJ 90A:23–64.  https://doi.org/10.2151/jmsj.2012-A02 CrossRefGoogle Scholar
  77. Ziemen FA, Rodehacke CB, Mikolajewicz U (2014) Coupled ice sheet–climate modeling under glacial and pre-industrial boundary conditions. Clim Past 10:1817–1836.  https://doi.org/10.5194/cp-10-1817-2014 CrossRefGoogle Scholar
  78. Zweck C, Huybrechts P (2005) Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity. J-Geophys-Res doi.  https://doi.org/10.1029/2004JD005489 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.U.S. Geological SurveyCorvallisUSA

Personalised recommendations