Advertisement

North Pacific temperature and precipitation response to El Niño-like equatorial heating: sensitivity to forcing location

  • Jian ShiEmail author
  • Alexey V. Fedorov
  • Shineng Hu
Article

Abstract

This study investigates the sensitivity of oceanic and atmospheric response in the extra-tropics, especially in the North Pacific, to the position of equatorial El Niño-like heating within a slab-ocean climate model. In a suite of numerical experiments, we impose an idealized equatorial sea surface temperature (SST) anomaly in the Pacific and systematically vary its longitudinal position along the equator to mimic different “flavors” of El Niño. We find that regardless of the forcing location, the induced SST pattern closely resembles a positive phase of the Pacific Decadal Oscillation with a characteristic warming along the North American coast as part of an arc-shaped pattern, accompanied by wind anomalies around the Aleutian low. However, the extent and magnitude of the coastal warming vary nonmonotonically when the forcing shifts westward along the equator. The strongest response is found when the equatorial forcing is located in the central Pacific close to the Dateline. In contrast, precipitation response over Southern California is strongest for an eastern Pacific warming centered at 150°W, even though its magnitude is highly uncertain since the boundary between dry and wet precipitation anomalies passes through this region. We repeat the experiments for cold (i.e. La Niña-like) anomalies and observe a significant asymmetry in the SST and atmospheric response between the warm and cold cases. Finally, our experiments suggest that tropical heating (or cooling) over the Western Pacific warm pool generates the largest tropical rainfall response and hence the largest global-mean SST anomaly.

Keywords

ENSO El Niño flavors El Niño teleconnection Pacific Decadal Oscillation Sea surface temperature Southern California precipitation 

Notes

Acknowledgements

We thank two anonymous reviewers for their constructive comments and thoughtful suggestions, which led to significant improvements in this paper. This research is supported by Grants to A. V. F. from NASA (NNX17AH21G) and NSF (AGS-0163807). S. H. is supported by the Scripps Institutional Postdoctoral Fellowship. J. S. is supported by the funding from the National Natural Science Foundation of China (41775067) and the China Scholarship Council (CSC) (201706010029). We also thank the Yale Center for Research Computing (YCRC).

References

  1. Amaya DJ, Bond NE, Miller AJ, DeFlorio MJ (2016) The evolution and known atmospheric forcing mechanisms behind the 2013–2015 North Pacific warm anomalies. US CLIVAR Var 14(2):1–6. https://usclivar.org/newsletter/newsletters
  2. An SI, Ham YG, Kug JS, Jin FF, Kang JS (2005) El Niño–La Niña asymmetry in the coupled model intercomparison project simulations. J Clim 18(14):2617–2627.  https://doi.org/10.1175/JCLI3433.1 CrossRefGoogle Scholar
  3. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007.  https://doi.org/10.1029/2006JC003798 CrossRefGoogle Scholar
  4. Bond NA, Overland JE, Spillane M, Stabeno P (2003) Recent shifts in the state of the North Pacific. Geophys Res Lett 30(23):2183.  https://doi.org/10.1029/2003GL018597 CrossRefGoogle Scholar
  5. Bond NA, Cronin MF, Freeland H, Mantua N (2015) Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys Res Lett 42:3414–3420.  https://doi.org/10.1002/2015GL063306 CrossRefGoogle Scholar
  6. Bryson RA, Hare FK (1974) Climates of North America, World Survey of Climatology, vol 11. Elsevier, AmsterdamGoogle Scholar
  7. Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26(8):1027–1030.  https://doi.org/10.1029/1999GL900161 CrossRefGoogle Scholar
  8. Cai W, Cowan T (2009) La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:L12805CrossRefGoogle Scholar
  9. Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4(2):111–116CrossRefGoogle Scholar
  10. Capotondi A et al (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96(6):921–938CrossRefGoogle Scholar
  11. Chiang J, Vimont D (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability. J Clim 17:4143–4158CrossRefGoogle Scholar
  12. Clarke AJ (2008) An introduction to the dynamics of El Nino and the southern oscillation. Academic Press, LondonGoogle Scholar
  13. Danabasoglu G, Gent PR (2009) Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J Clim 22(9):2494–2499CrossRefGoogle Scholar
  14. Di Lorenzo E, Mantua N (2016) Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat Clim Change 6(11):1042–1047CrossRefGoogle Scholar
  15. Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson BT, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3:762–765CrossRefGoogle Scholar
  16. Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40:2825–2847CrossRefGoogle Scholar
  17. Fedorov AV, Hu S, Lengaigne M, Guilyardi E (2015) The impact of westerly wind bursts and ocean initial state on the development, and diversity of El Niño events. Clim Dyn 44(5–6):1381–1401CrossRefGoogle Scholar
  18. Feng J, Wu Z, Zou X (2014) Sea surface temperature anomalies off Baja California: a possible precursor of ENSO. J Atmos Sci 71:1529–1537CrossRefGoogle Scholar
  19. Feng J, Chen W, Li YJ (2017) Asymmetry of the winter extra-tropical teleconnections in the Northern Hemisphere associated with two types of ENSO. Clim Dyn 48:2135–2151CrossRefGoogle Scholar
  20. Furtado JC, Di Lorenzo E, Anderson BT, Schneider N (2012) Linkages between the North Pacific Oscillation and central tropical Pacific SSTs at low frequencies. Clim Dyn 39:2833–2846CrossRefGoogle Scholar
  21. Graf HF, Zanchettin D (2012) Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J Geophys Res Atmos 117(D1):D01102.  https://doi.org/10.1029/2011JD016493 CrossRefGoogle Scholar
  22. Hartmann DL (2015) Pacific sea surface temperature and the winter of 2014. Geophys Res Lett 42:1894–1902CrossRefGoogle Scholar
  23. Higgins RW, Chen Y, Douglas AV (1999) Interannual variability of the North American warm season precipitation regime. J Clim 12:653–680CrossRefGoogle Scholar
  24. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10(8):1769–1786CrossRefGoogle Scholar
  25. Hu S, Fedorov AV (2016) Exceptionally strong easterly wind burst stalling El Niño of 2014. Proc Natl Acad Sci USA 113(8):2005–2010CrossRefGoogle Scholar
  26. Hu S, Fedorov AV (2017a) The extreme El Niño of 2015–2016: the role of westerly and easterly wind bursts, and preconditioning by the failed 2014 event. Clim Dyn.  https://doi.org/10.1007/s00382-017-3531-2 Google Scholar
  27. Hu S, Fedorov AV (2017b) The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys Res Lett 44(8):3816–3824CrossRefGoogle Scholar
  28. Hu S, Fedorov AV (2018) Cross-equatorial winds control El Niño diversity and change. Nat Clim Change 8(9):798–802CrossRefGoogle Scholar
  29. Hu S, Fedorov AV, Lengaigne M, Guilyardi E (2014) The impact of westerly wind bursts on the diversity and predictability of El Niño events: an ocean energetics perspective. Geophys Res Lett 41(13):4654–4663CrossRefGoogle Scholar
  30. Hu ZZ, Kumar A, Jha B, Zhu JS, Huang BH (2017) Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. J Clim 30(2):689–702CrossRefGoogle Scholar
  31. Jacox M et al (2016) Impacts of the 2015–2016 El Niño on the California current system: early assessment and comparison to past events. Geophys Res Lett 43:7072–7080CrossRefGoogle Scholar
  32. Jin FF, An SI, Timmermann A, Zhao JX (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30(3):1120.  https://doi.org/10.1029/2002GL016356 CrossRefGoogle Scholar
  33. Joh Y, Di Lorenzo E (2017) Increasing coupling between NPGO and PDO leads to prolonged marine heatwaves in the Northeast Pacific. Geophys Res Lett 44(22):11663–11671.  https://doi.org/10.1002/2017GL075930 CrossRefGoogle Scholar
  34. Jones C (2000) Occurrence of extreme precipitation events in California and relationships with the Madden–Julian oscillation. J Clim 13(20):3576–3587CrossRefGoogle Scholar
  35. Kang IS, Kug JS (2002) El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res 107(19):4372.  https://doi.org/10.1029/2001JD000393 CrossRefGoogle Scholar
  36. Kao HY, Yu JY (2009) Contrasting eastern Pacific and central Pacific types of ENSO. J Clim 22:615–632CrossRefGoogle Scholar
  37. Kosaka Y, Xie SP (2013) Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501(7467):403–407CrossRefGoogle Scholar
  38. Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515.  https://doi.org/10.1175/2008JCLI2624.1 CrossRefGoogle Scholar
  39. Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705.  https://doi.org/10.1029/2005GL022860 CrossRefGoogle Scholar
  40. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603.  https://doi.org/10.1029/2010GL044007 Google Scholar
  41. Lee SK, Wang C, Mapes BE (2009) A simple atmospheric model of the local and teleconnection responses to tropical heating anomalies. J Clim 22:272–284CrossRefGoogle Scholar
  42. Lee SK, Lopez H, Chung ES, DiNezio P, Yeh SW, Wittenberg AT (2018) On the fragile relationship between El Niño and California rainfall. Geophys Res Lett 45(2):907–915CrossRefGoogle Scholar
  43. Liang YC, Yu JY, Saltzman ES, Wang F (2017) Linking the tropical Northern Hemisphere pattern to the Pacific warm blob and Atlantic cold blob. J Clim 30(22):9041–9057CrossRefGoogle Scholar
  44. McCabe GJ, Dettinger MD (1999) Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int J Climatol 19(13):1399–1410CrossRefGoogle Scholar
  45. McPhaden MJ (2012) A 21st century shift in the relationship between ENSO SST and warm water volume anomalies. Geophys Res Lett 39:L09706.  https://doi.org/10.1029/2012gl051826 CrossRefGoogle Scholar
  46. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745CrossRefGoogle Scholar
  47. Medred C (2014) Unusual species in Alaska waters indicate parts of Pacific warming dramatically. Alaska Dispatch News. http://www.adn.com/article/20140914/unusual-speciesalaska-waters-indicate-parts-pacific-warming-dramatically. Accessed 14 Sept 2014
  48. Mitchell TP, Blier W (1997) The variability of wintertime precipitation in the region of California. J Clim 10:2261–2276CrossRefGoogle Scholar
  49. Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23:3639–3656.  https://doi.org/10.1175/2010JCLI3553.1 CrossRefGoogle Scholar
  50. Mo KC, Higgins RW (1998) Tropical influences on California precipitation. J Clim 11(3):412–430CrossRefGoogle Scholar
  51. Neelin JD, Battisti DS, Hirst AC, Jin FF, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res 103:14261–14290CrossRefGoogle Scholar
  52. Null J (1993) Relationships between type 1 ENSO events and California rainfall, 1949–1991. In: Eighth conference on applied climatology. American Meteorological Society, Anaheim, CA, pp 82–88 (preprints) Google Scholar
  53. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024CrossRefGoogle Scholar
  54. Philander SG (1990) El Niño, La Niña, and the southern oscillation, International geophysics series, vol 46. Academic Press, San DiegoGoogle Scholar
  55. Ralph FM et al (2003) The impact of a prominent rain shadow on flooding in California’s Santa Cruz Mountains: a CALJET case study and sensitivity to the ENSO cycle. J Hydrometeorol 4(6):1243–1264CrossRefGoogle Scholar
  56. Raphael M, Mills G (1996) The role of mid-latitude cyclones in the winter precipitation of California. Prof Geogr 48:251–262CrossRefGoogle Scholar
  57. Ropelewski CF, Halpert MS (1986) North American precipitation and temperature patterns associated with the El Niño/Southern Oscillation (ENSO). Mon Weather Rev 114(12):2352–2362CrossRefGoogle Scholar
  58. Sarachik ES, Cane MA (2010) The El Niño-Southern oscillation phenomenon. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  59. Schonher T, Nicholson SE (1989) The relationships between California rainfall and ENSO events. J Clim 2:1258–1269CrossRefGoogle Scholar
  60. Seager R et al (2015) Causes of the 2011–14 California drought. J Clim 28:6997–7024CrossRefGoogle Scholar
  61. Shi J, Qian WH (2018) Asymmetry of two types of ENSO in the transition between the East Asian winter monsoon and the ensuing summer monsoon. Clim Dyn.  https://doi.org/10.1007/s00382-018-4119-1 Google Scholar
  62. Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J Geophys Res 107(D8):4065.  https://doi.org/10.1029/2000JD000298 CrossRefGoogle Scholar
  63. Tseng YH, Ding RQ, Huang XM (2017) The warm Blob in the northeast Pacific—the bridge leading to the 2015/16 El Niño. Environ Res Lett 12(5):054019CrossRefGoogle Scholar
  64. Vimont DJ (2010) Transient growth of thermodynamically coupled variations in the tropics under an equatorially symmetric mean. J Clim 23:5771–5789CrossRefGoogle Scholar
  65. Wang X, Wang C (2014) Different impacts of various El Niño events on the Indian Ocean Dipole. Clim Dyn 42:991–1005CrossRefGoogle Scholar
  66. Wang SY, Hipps L, Gillies RR, Yoon JH (2014) Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys Res Lett 41:3220–3226CrossRefGoogle Scholar
  67. Weng H, Ashok K, Behera SK, Rao SA (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Clim Dyn 29:113–129CrossRefGoogle Scholar
  68. Whitney FA (2015) Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys Res Lett 42:428–431CrossRefGoogle Scholar
  69. Wu B, Li T, Zhou TJ (2010) Asymmetry of atmospheric circulation anomalies over the western North Pacific between El Niño and La Niña. J Clim 23(18):4807–4822.  https://doi.org/10.1175/2010JCLI3222.1 CrossRefGoogle Scholar
  70. Xie SP (1999) A dynamic ocean-atmosphere model of the tropical Atlantic decadal variability. J Clim 12:64–70CrossRefGoogle Scholar
  71. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514CrossRefGoogle Scholar
  72. Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106.  https://doi.org/10.1029/2006JD007654 CrossRefGoogle Scholar
  73. Yu JY, Kim ST (2011) Relationship between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720CrossRefGoogle Scholar
  74. Yu JY, Zou Y (2013) The enhanced drying effect of central-Pacific El Niño on US winter. Environ Res Lett 8:014019.  https://doi.org/10.1088/1748-9326/8/1/014019 CrossRefGoogle Scholar
  75. Yu JY, Zou Y, Kim ST, Lee T (2012) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39(15):L15702.  https://doi.org/10.1029/2012GL052483 CrossRefGoogle Scholar
  76. Zhang WJ, Jin FF, Zhao JX, Qi L, Ren HL (2013) The possible influence of a nonconventional El Niño on the severe autumn drought of 2009 in southwest China. J Clim 26:8392–8405CrossRefGoogle Scholar
  77. Zhang T, Perlwitz J, Hoerling MP (2014) What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys Res Lett 41:1019–1025CrossRefGoogle Scholar
  78. Zhang RH, Li TR, Wen M, Liu L (2015a) Role of intraseasonal oscillation in asymmetric impacts of El Niño and La Niña on the rainfall over southern China in boreal winter. Clim Dyn 45:559–567CrossRefGoogle Scholar
  79. Zhang WJ, Wang L, Xiang BQ, Qi L, He JH (2015b) Impacts of two types of La Niña on the NAO during boreal winter. Clim Dyn 44:1351–1366.  https://doi.org/10.1007/s00382-014-2155-z CrossRefGoogle Scholar
  80. Zheng J, Liu Q, Wang C, Zheng XT (2013) Impact of heating anomalies associated with rainfall variations over the Indo-Western Pacific on Asian atmospheric circulation in winter. Clim Dyn 40:2023–2033CrossRefGoogle Scholar
  81. Zheng XT, Xie SP, Lv LH, Zhou ZQ (2016) Intermodel uncertainty in ENSO amplitude change tied to Pacific Ocean warming pattern. J Clim 29:7265–7279.  https://doi.org/10.1175/JCLI-D-16-0039.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geology and GeophysicsYale UniversityNew HavenUSA
  2. 2.Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  3. 3.Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoUSA

Personalised recommendations