Advertisement

Climate Dynamics

, Volume 53, Issue 3–4, pp 1307–1322 | Cite as

Precursors of quasi-decadal dry-spells in the Central America Dry Corridor

  • Hugo G. HidalgoEmail author
  • Eric J. Alfaro
  • Jorge A. Amador
  • Álvaro Bastidas
Article

Abstract

Although the hydric stress in Central America is generally low, there is a region relatively drier and prone to drought known as the Central America Dry Corridor (CADC). The area of interest is located mainly in the Pacific slope of Central America, from Chiapas in southern Mexico, to the Nicoya Peninsula in the Costa Rican North Pacific. Most of the region has experienced significant warming trends (1970–1999). On the contrary precipitation and the Palmer Drought Severity Index (PDSI) have mainly displayed non-significant trends. Analysis using the Standardized Precipitation Index and PDSI in the CADC, suggests a significant periodicity of severe and sustained droughts of around 10 years. The drought response has been associated with tropical heating that drives an atmospheric response through strengthening of the Hadley cell, which in turn produces higher pressure in the subtropical highs, and intensification of the trade winds (indexed by the Caribbean Low Level Jet). It is important to determine the commonness of severe and sustained droughts in the CADC to improve water resources planning, as this is a region that depends on subsistence agriculture and presents high social and economic vulnerabilities.

Keywords

Quasi-decadal Oscillation Drought Hydrology Climate variability 

Notes

Acknowledgements

This work was partially funded by projects 805-B7-286 (supported by UCREA), B7-507 and B6-143 (both supported by Vice-presidency of Research at University of Costa Rica (UCR), CONICIT and MICITT), A9-532 (supported by CSUCA-ASDI), B4-227, B0-065, B4-227, B0-810, B8-766 (VI-Redes), B9-454 (VI-Grupos) and A4-906 (CIGEFI-UCR, PESCTMA), from the Center for Geophysical Research (CIGEFI) of UCR. Thanks to the logistics support provided by the School of Physics of UCR. The authors thank Natalie Mora, Paula M. Pérez-Briceño and Andrés Jiménez who formatted the data and collaborated in the calculation of ancillary material.

Supplementary material

382_2019_4638_MOESM1_ESM.docx (148 kb)
Supplementary material 1 (DOCX 148 KB)

References

  1. Aguilar E et al (2005) Changes in precipitation and temperature extremes in central America and northern South America, 1961–2003. J Geophys Res Atmos.  https://doi.org/10.1029/2005JD006119 Google Scholar
  2. Alfaro E (2002) Some characteristics of the annual precipitation cycle in Central America and their relationships with its surrounding tropical oceans. Tópicos Meteorológicos y Oceanográficos 9:88–103Google Scholar
  3. Alfaro EJ, Soley FJ (2009) Descripción de dos métodos de rellenado de datos ausentes en series de tiempo meteorológicas. Revista de Matemáticas Teoría y Aplicaciones 16:59–74Google Scholar
  4. Alley WM (1984) The Palmer Drought Severity Index: limitations and assumptions. J Clim Appl Meteor 23:1100–1109CrossRefGoogle Scholar
  5. Amador JA (1998) A climatic feature of the tropical Americas: the Trade Wind Easterly Jet. Tópicos Meteorológicos y Oceanográficos 5:91–102Google Scholar
  6. Amador JA (2008) The intra-americas sea low-level jet, overview and future research. Trends and directions in climate research. Ann N Y Acad Sci 1146:153–188.  https://doi.org/10.1196/annals.1446.012 CrossRefGoogle Scholar
  7. Amador JA (2011) Socio-economic impacts associated with meteorological systems and tropical cyclones in Central América in 2010. Bull Am Meteorol Soc 92:S184Google Scholar
  8. Amador JA, Magaña VO, Pérez JB (2000) The Low Level Jet and continental activity in the Caribbean. In: Proceedings of the 24th conference on hurricanes and tropical meteorology, FT. Lauderdale, American Meteorological Society, pp 114–115Google Scholar
  9. Amador JA, Chacón JR, Laporte S (2003) Climate and climate variability in the Arenal Basin of Costa Rica. In: Climate, water and trans-boundary challenges in the Americas. Kluwer Academic, Holland, pp 317–349Google Scholar
  10. Amador JA, Alfaro EJ, Lizano OG, Magaña VO (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanogr 69:101–142.  https://doi.org/10.1016/j.pocean.2006.03.007 CrossRefGoogle Scholar
  11. Amador JA, Durán-Quesada AM, Rivera ER, Mora G, Sáenz F, Calderón B, Mora N (2016a) The easternmost tropical Pacific. Part II: seasonal and intraseasonal modes of atmospheric variability. Revista de Biología Tropical 64:S23–S57CrossRefGoogle Scholar
  12. Amador JA, Rivera ER, Durán-Quesada AM, Mora G, Sáenz F, Calderón B, Mora N (2016b) The easternmost tropical Pacific. Part I: a climate review. Revista de Biología Tropical 64:S1–S22CrossRefGoogle Scholar
  13. Amador JA, Hidalgo HG, Alfaro EJ, Durán-Quesada AM, Calderón B, Mora N, Arce D (2017) Central America [in “State of the Climate in 2016”]. Bull Am Meteorol Soc 98:S180–S183.  https://doi.org/10.1175/2017BAMSStateoftheClimate.1 Google Scholar
  14. Anchukaitis KJ, Taylor MJ, Leland C, Pons D, Martin-Fernandez J, Castellanos E (2015) Tree-ring reconstructed dry season rainfall in Guatemala. Clim Dyn 45:1537–1546.  https://doi.org/10.1007/s00382-014-2407-y CrossRefGoogle Scholar
  15. Barber CB, Dobkin DP, Huhdanpaa HT (1996) The Quickhull algorithm for convex hulls. ACM Trans Math Softw 22:469–483CrossRefGoogle Scholar
  16. Butterworth S (1930) On the theory of filter amplifiers. Exp Wirel Wirel Eng 7:536–541Google Scholar
  17. Cook KH, Vizy EK (2010) Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J Clim 23:1477–1494.  https://doi.org/10.1175/2009JCLI3210.1 CrossRefGoogle Scholar
  18. Delone BN (1934) Sur la sph ́ere vide. Bul Acad Sci URSS Class Sci Nat, pp 793–800Google Scholar
  19. Durán-Quesada AM, Gimeno L, Amador J (2016) Role of moisture transport for Central American precipitation. Earth Syst Dyn Discuss.  https://doi.org/10.5194/esd-2016-66 Google Scholar
  20. Enfield DB, Alfaro EJ (1999) The dependence of Caribbean rainfall on the interaction of the tropical Atlantic and Pacific oceans. J Clim 12:2093–2103.  https://doi.org/10.1175/1520-0442(1999)012%3C2093:TDOCRO%3E2.0.CO;2 CrossRefGoogle Scholar
  21. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080.  https://doi.org/10.1029/2000GL012745 CrossRefGoogle Scholar
  22. FAO (2016) Corredor Seco América Central, informe de situación, junio 2016. Food and Agriculture Organization of the United Nations, Quebec City, p 3Google Scholar
  23. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  24. Hasanean HM (2004) Variability of the North Atlantic Subtropical High and associations with tropical sea surface temperatures. Int J Climatol 24:945–957.  https://doi.org/10.1002/joc.1042 CrossRefGoogle Scholar
  25. Hidalgo HG, Alfaro EJ (2012) Some physical and socio-economical aspects of climate change in Central America. Prog Phys Geogr 36:380–399.  https://doi.org/10.1177/0309133312438906 CrossRefGoogle Scholar
  26. Hidalgo HG, Dracup JA (2002) Southern hemisphere teleconnection patterns and their relation to australian hydroclimatic variation: potential precipitation and streamflow long-range forecasting. In: Proceedings of the 27th hydrology and water resources conference. Melbourne, Australia, p 6Google Scholar
  27. Hidalgo HG, Amador JA, Alfaro EJ, Quesada B (2013) Hydrological climate change projections for Central America. J Hydrol 495:94–112.  https://doi.org/10.1016/j.jhydrol.2013.05.004 CrossRefGoogle Scholar
  28. Hidalgo HG, Durán-Quesada AM, Amador JA, Alfaro EJ (2015) The Caribbean low level jet, the inter-tropical convergence zone and precipitation patterns in the intra Americas sea: a proposed dynamical mechanism. Geogr Ann Series A Phys Geogr 97:41–59.  https://doi.org/10.1111/geoa.1208 CrossRefGoogle Scholar
  29. Hidalgo HG, Alfaro EJ, Quesada-Montano B (2017) Observed (1970–1999) climate variability in Central America using a high-resolution meteorological dataset with implication to climate change studies. Clim Change 141:13–28.  https://doi.org/10.1007/s10584-016-1786-y CrossRefGoogle Scholar
  30. Hidalgo León HG, Herrero Madriz C, Alfaro Martínez EJ, Muñoz SG, Mora Sandí NP, Mora Alvarado DA, Chacón Salazar VH (2015) Urban Waters in Costa Rica. In: Urban Water Challenges in the Americas. A Perspective from the Academies of Sciences. Interamerican Network of Academies of Sciences, pp 202–225. http://www.ianas.org. Accessed 3 Dec 2017
  31. Hurrel JM (1995) Decadal trends in the North Atlantic Oscillation: regional temperature and precipitation. Science 269:676–679CrossRefGoogle Scholar
  32. Imbach P, Molina L, Locatelli B, Roupsard O, Mahe G, Neilson R, Corrales L, Scholze M, Cialis P (2012) Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios. J Hydrometeorol 13:665–680.  https://doi.org/10.1175/JHM-D-11-023.1 CrossRefGoogle Scholar
  33. IPCC (2007) Historical overview of climate change science. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate Change. Cambridge University Press, CambridgeGoogle Scholar
  34. Jones PD, Harpham C, Harris I, Goodess CM, Burton A, Centella-Artola A, Taylor MA, Bezanilla-Morlot A, Campbell JD, Stephenson TS, Joslyn O, Nicholls K, Baur T (2016) Long-term trends in precipitation and temperature across the Caribbean. Int J Climatol 36:3314–3333.  https://doi.org/10.1002/joc.4557 CrossRefGoogle Scholar
  35. Jury MR (2009) A quasi-decadal cycle in Caribbean climate. J Geophys Res 114:D13102.  https://doi.org/10.1029/2009JD011741 CrossRefGoogle Scholar
  36. Jury MR, Gouirand I (2011) Decadal climate variability of the eastern Caribbean. J Geophys Res 116:D00Q03.  https://doi.org/10.1029/2010JD015107 CrossRefGoogle Scholar
  37. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471.  https://doi.org/10.1175/1520-0477(1996)077%3C0437:TNYRP%3E2.0.CO;2 CrossRefGoogle Scholar
  38. Kendall MG (1975) Rank correlation methods, 4th edn. Charles Griffin, LondonGoogle Scholar
  39. Magaña V, Amador JA, Medina S (1999) The mid-summer drought over Mexico and Central America. J Clim 12:1577–1588.  https://doi.org/10.1175/1520-0442(1999)012%3C1577:TMDOMA%3E2.0.CO;2 CrossRefGoogle Scholar
  40. Maldonado T, Alfaro E, Fallas B, Alvarado L (2013) Seasonal prediction of extreme precipitation events and frequency of rainy days over Costa Rica, Central America, using canonical correlation analysis. Adv Geosci 33:41–52CrossRefGoogle Scholar
  41. Maldonado T, Rutgersson A, Amador J, Alfaro E, Claremar B (2015) Variability of the Caribbean low-level jet during boreal winter: large-scale forcings. Int J Climatol.  https://doi.org/10.1002/joc.4472 Google Scholar
  42. Maldonado T, Alfaro E, Rutgersson A, Amador JA (2016a) The early rainy season in Central America: the role of the tropical North Atlantic SSTs. Int J Climatol.  https://doi.org/10.1002/joc.4958 Google Scholar
  43. Maldonado T, Rutgersson A, Alfaro E, Amador J, Claremar B (2016b) Interannual variability of the midsummer drought in Central America and the connection with sea surface temperatures. Adv Geosci 42:35–50.  https://doi.org/10.5194/adgeo-42-35-2016 CrossRefGoogle Scholar
  44. Maldonado T, Alfaro EJ, Hidalgo HG (2018) Revision of the main drivers and variability of Central America Climate and seasonal forecast systems. Revista de Biología Tropical 66:S153–S175CrossRefGoogle Scholar
  45. Mann HB (1945) Non-parametric tests against trend. Econometrica 13:163–171CrossRefGoogle Scholar
  46. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scale. In: Proceedings of the eighth conference on applied climatology, Anaheim, California, 17–22 January 1993. American Meteorological Society, Boston, pp 179–184Google Scholar
  47. Muñoz E, Busalacchi AJ, Nigam S, Ruiz-Barradas A (2008) Winter and summer structure of the Caribbean low-level jet. J Clim 21:1260–1276.  https://doi.org/10.1175/2007JCLI1855.1 CrossRefGoogle Scholar
  48. Palmer WC (1965) Meteorological drought. Office of Climatology Research Paper 45, Weather Bureau, Washington, DC, p 58Google Scholar
  49. Pennington G, Lewis GP, Ratter JA (2006) Neotropical savannas and seasonally dry forests: plant diversity, biogeography, and conservation. CRC, Boca Raton, pp 1–30CrossRefGoogle Scholar
  50. Peralta RO, Carrazón Alocén J, Zelaya Elvir CA (2012) Buenas prácticas para la seguridad alimentaria y la gestión de riesgo. Publicado por: organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO), p 53Google Scholar
  51. Pérez-Briceño PM, Alfaro EJ, Hidalgo HG, Jiménez F (2016) Distribución espacial de impactos de eventos hidrometeorológicos en América Central. Revista de Climatología 16:63–75Google Scholar
  52. Quirós Badilla E, Hidalgo León HG (2016) Variabilidad y conexiones climáticas de la zona de convergencia intertropical del Pacífico este. Tópicos Meteorológicos y Oceanográficos 15:21–36Google Scholar
  53. Richman MB (1986) Rotation of Principal Components. J Climatol 6:293–335CrossRefGoogle Scholar
  54. Stephenson TS, Vincent LA, Allen T, Van Meerbeeck CJ, McLean N, Peterson TC, Taylor MA, Aaron-Morrison AP, Auguste T, Bernard D, Boekhoudt JRI, Blenman RC, Braithwaite GC, Brown G, Butler M, Cumberbatch CJM, Etienne-Leblanc S, Lake DE, Martin DE, McDonald JL, Ozoria Zaruela M, Porter AO, Santana Ramirez M, Tamar GA, Roberts BA, Sallons Mitro S, Shaw A, Spence JM, Winter A, Trotman AR (2014) Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. Int J Climatol 34:2957–2971.  https://doi.org/10.1002/joc.3889 Google Scholar
  55. Taylor M, Alfaro E (2005) Climate of Central America and the Caribbean. In: Oliver JE (ed) Encyclopedia of world climatology. Springer, Netherlands, pp 183–189CrossRefGoogle Scholar
  56. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation, part II: trends. J Clim 13:1018–1036CrossRefGoogle Scholar
  57. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  58. Torrence C, Compo G (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78CrossRefGoogle Scholar
  59. van der Zee Arias A, van der Zee J, Meyrat A, Poveda C, Picado L (2012a) Estudio de la caracterización del Corredor Seco Centroamericano. Food and Agriculture Organization of the United Nations (FAO), Quebec City, p 92Google Scholar
  60. van der Zee Arias A, van der Zee J, Meyrat A, Poveda C, Picado L (2012b) Identificación de actores relevantes y relaciones interinstitucionales en el Corredor Seco Centroamericano. Food and Agriculture Organization of the United Nations (FAO), Quebec City, p 122Google Scholar
  61. Wang C (2007) Variability of the Caribbean Low-Level Jet and its relations to climate. Clim Dyn 29:411–422.  https://doi.org/10.1007/s00382-007-0243-z CrossRefGoogle Scholar
  62. Webb RW, Rosenzweig CE, Levine ER (2000) Global soil texture and derived water-holding capacities (Webb et al.). Data set. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge. http://www.daac.ornl.gov.  https://doi.org/10.3334/ORNLDAAC/548. Accessed 3 Dec 2017
  63. Wells N, Goddard S, Hayes MJ (2004) A self-calibrating palmer drought severity index. J Clim 17:2335–2351CrossRefGoogle Scholar
  64. Whyte FS, Taylor MA, Stephenson TS, Campbell JD (2008) Features of the Caribbean low level jet. J Climatol 28:119–128.  https://doi.org/10.1002/joc.1510 CrossRefGoogle Scholar
  65. WMO (2012) Standardized Precipitation Index User Guide (Svoboda M, Hayes M, Wood D), WMO-No. 1090, GenevaGoogle Scholar
  66. Zuluaga MD, Houze RA Jr (2015) Extreme convection of the near-equatorial Americas, Africa, and adjoining oceans as seen by TRMM. Mon Weather Rev 143:298–316.  https://doi.org/10.1175/MWR-D-14-00109.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Geophysical ResearchUniversity of Costa RicaSan PedroCosta Rica
  2. 2.School of PhysicsUniversity of Costa RicaSan PedroCosta Rica
  3. 3.Center for Research in Marine Sciences and LimnologyUniversity of Costa RicaSan PedroCosta Rica
  4. 4.Graduate Program in Atmospheric Sciences, Postgraduate Studies SystemUniversity of Costa RicaSan PedroCosta Rica

Personalised recommendations