Advertisement

Climate Dynamics

, Volume 53, Issue 3–4, pp 1261–1276 | Cite as

Implementation of snow albedo schemes of varying complexity and their performances in offline Noah and Noah coupled with NCEP CFSv2

  • Archana RaiEmail author
  • Subodh K. Saha
  • K. Sujith
Article

Abstract

The representation of snow albedo in global models is recognized as one of the key sources of uncertainty in the simulation of mean and variability of climate. The Climate Forecast System version 2 (CFSv2), which is used for subseasonal-to-seasonal forecast of weather and climate, also suffers from large overestimation of surface albedo, particularly over the snow region. In order to improve the snow albedo biases, performances of three snow albedo schemes: the existing ‘maximum snow albedo’ (MSA) scheme of land surface model Noah, temperature dependent scheme of Roeckner et al. (The atmospheric general circulation model ECHAM5—part 1. Technical Report 349, Max Planck Institute for Meteorology, 2003) (RK03) and prognostic albedo scheme of Dutra et al. (J Hydrometeor 11:899–916, 2010) (DU10) are evaluated in offline mode. While offline Noah performs better with MSA scheme as compared to RK03 and DU10 in simulating climatological mean albedo, DU10 scheme shows a better skill in simulating monthly albedo and also captures the interannual variability with high fidelity. Therefore, MSA and DU10 schemes are also evaluated in coupled model along with the existing albedo scheme of Briegleb (J Geophys Res 97:7603–7612, 1992) (BR92) in CFSv2. The performance of MSA scheme is found to be better in simulating surface albedo, snow water equivalent and 2 m air temperature as compared to those using DU10 and BR92 schemes. Furthermore, the improved albedo have positive impact in the simulation of Indian summer monsoon rainfall, that reduces the dry bias over the Indian subcontinent, and cold bias in sea surface temperature and improves rainfall teleconnection. Thus, among four schemes (MSA, RK03, DU10 and BR92) evaluated here, MSA appears to be the most suitable snow albedo scheme for CFSv2.

Notes

Acknowledgements

We sincerely thank Director IITM for all support and encouragement to carry out this work. IITM is supported by the Ministry of Earth Sciences, Government of India. We thank NCEP for providing the coupled model CFSv2, which is freely available online (http://cfs.ncep.noaa.gov). CERES, EBAF-TOA and EBAF-Surface products were obtained from the NASA Langley Research Center CERES ordering tool available at http://ceres.larc.nasa.gov. Freeware Grads is used extensively in this study. Authors also thank anonymous reviewers for their constructive comments, which improved the earlier version of this manuscript.

Supplementary material

382_2019_4632_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3113 KB)

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydro Meteorol 4:1147–1167.  https://doi.org/10.1175/1525-7541(2003)004%3C1147:TVGPCP%3E2.0.CO;2 Google Scholar
  2. Baker DG, Ruschy DL, Wall DB (1990) The albedo decay of prarie snows. J Appl Meteorol 29: 179–187.  https://doi.org/10.1175/1520-0450(1990)029%3C0179:TADOPS%3E2.0.CO;2 CrossRefGoogle Scholar
  3. Barlage M, Chen F, Tewari M, Ikeda K, Gochis D, Dudhia J, Rasmussen R, Livneh B, Ek M, Mitchell K (2010) Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J Geophys Res 115:D22101.  https://doi.org/10.1029/2009JD013470 CrossRefGoogle Scholar
  4. Briegleb BP (1992) Delta-Eddington approximation for solar radiation in the NCAR community climate model. J Geophys Res 97:7603–7612.  https://doi.org/10.1029/92JD00291 CrossRefGoogle Scholar
  5. Brown RD, Brasnett B (2015) Updated annually. Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data. Environment Canada, 2010, Natl. Snow and Ice Data Cent, BoulderGoogle Scholar
  6. Chaudhari HS, Pokhrel S, Mohanty S, Saha SK (2013) Seasonal prediction of Indian summer monsoon in ncep coupled and uncoupled model. Theor Appl Climatol 114:459–477.  https://doi.org/10.1007/s00704-013-0854-8 CrossRefGoogle Scholar
  7. Chen F, Janjic Z, Mitchell KE (1997) Impact of atmospheric surface-layer parameterizations in the new land-surface scheme of the NCEP Mesoscale Eta Model. Bound Layer Meteorol 85:391–421.  https://doi.org/10.1023/A:1000531001463 CrossRefGoogle Scholar
  8. Cohen J, Entekhabi D (2001) The influence of snow cover on northern hemisphere climate variability. Atmos-Ocn 39:1:35–53.  https://doi.org/10.1080/07055900.2001.9649665 CrossRefGoogle Scholar
  9. Cohen J, Barlow M, Kushner PJ, Saito K (2007) Stratosphere–Troposphere coupling and links with Eurasian land surface variability. J Clim 20:5335–5343.  https://doi.org/10.1175/2007JCLI1725.1 CrossRefGoogle Scholar
  10. Delsole T, Shukla J (2010) Model fidelity versus skill in seasonal forecasting. J Clim 23:4794–4806.  https://doi.org/10.1175/2010JCLI3164.1 CrossRefGoogle Scholar
  11. Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986) Biosphere atmosphere transfer scheme (BATS) for the NCAR community climate model. NCAR Tech. Note NCAR/TN- 275 + STR, p 69.  https://doi.org/10.5065/D6668B58
  12. Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR community climate model. NCAR Tech. Note NCAR/TN-387 + STR, p 72.  https://doi.org/10.5065/D67W6959
  13. Douville H, Royer J-F, Mahfouf J-F (1995) A new snow parameterization for the Météo–France climate model. Part I: Validation in stand-alone experiments. Clim Dyn 12:21–35.  https://doi.org/10.1007/BF00208760 CrossRefGoogle Scholar
  14. Dutra E, Balsamo G, Viterbo P, Miranda PMA, Beljaars A, Schar C, Elder K (2010) An improved snow scheme for the ECMWF land surface model: description and offline validation. J Hydrometeor 11:899–916.  https://doi.org/10.1175/2010JHM1249.1 CrossRefGoogle Scholar
  15. Ek M, Mahrt L (1991) OSU 1-D PBL model user’s guide. Dep. of Atmos. Sci., Oregon State Univ Corvallis, OregGoogle Scholar
  16. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarplay JD (2003) Implementation of Noah land surface model advances in the National Centers for environmental prediction operational mesoscale eta model. J Geophys Res 1089(D22):8851.  https://doi.org/10.1029/2002JD003296 Google Scholar
  17. Fasullo J (2004) A stratified diagnosis of the Indian Monsoon-Eurasian snow cover relationship. J Clim 17:1110–1122. https://doi.org/10.1175/1520-0442(2004)017<1110:ASDOTI>2.0.CO;2CrossRefGoogle Scholar
  18. Fletcher CG, Thackeray CW, Burgers TM (2015) Evaluating biases in simulated snow albedo feedback in two generations of climate models. J Geophys Res Atmos 120:12–26.  https://doi.org/10.1002/2014JD022546 CrossRefGoogle Scholar
  19. Foster JL, Robinson DA, Hall DK, Estilow TW (2008) Spring snow melt timing and changes over Arctic lands. Polar Geography 31(3–4):145–157.  https://doi.org/10.1080/10889370802580185.CrossRefGoogle Scholar
  20. Gelaro R et al (2017) The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J Clim 30:5419–5454.  https://doi.org/10.1175/JCLI-D-16-0758.1 CrossRefGoogle Scholar
  21. Goswami BB, Deshpande M, Mukhopadhyay P, Saha SK, Rao SA, Murthugudde R, Goswami BN (2014) Simulation of monsoon intraseasonal variability in ncep cfsv2 and its role on systematic bias. Clim Dynm 43:2725–2745.  https://doi.org/10.1007/s00382-014-2089-5 CrossRefGoogle Scholar
  22. Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) A technical guide to MOM4, GFDL Ocean Group Tech. Rep. 5, p 337. NOAA/Geophysical Fluid Dynamics LaboratoryGoogle Scholar
  23. Hahn DG, Shukla J (1976) An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J Atmos Sci 33:2461–2462CrossRefGoogle Scholar
  24. Hall A, Qu X (2006) Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett 33:L03502.  https://doi.org/10.1029/2005GL025127 Google Scholar
  25. Hall DK, Riggs GA (2016) MODIS/Aqua Snow Cover Monthly L3 Global 0.05Deg CMG, Version 6. [MYD10CM]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.  https://doi.org/10.5067/MODIS/MYD10CM.006
  26. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations-The CRU TS3.10 57 dataset. Int J Climatol 34:623–642.  https://doi.org/10.1002/joc.3711 CrossRefGoogle Scholar
  27. Kato S, Loeb NG, Rose FG, Doelling DR, Rutan DA, Caldwell TE, Yu L, Weller RA (2013) Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J Clim 26:2719–2740.  https://doi.org/10.1175/JCLI-D-12-00436.1 CrossRefGoogle Scholar
  28. Koren V, Schaake J, Mitchell K, Duan Q-Y, Chen F, Baker JM (1999) A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J Geophys Res 104:19,569–519,585.  https://doi.org/10.1029/1999JD900232 CrossRefGoogle Scholar
  29. Kripalani RH, Kulkarni A (1999) Climatology and variability of historical Soviet snow depth data: some new perspectives in snow-Indian monsoon teleconnections. Clim Dyn 15:475–489.  https://doi.org/10.1007/s003820050294 CrossRefGoogle Scholar
  30. Levine XJ, Boos WR (2017) Land surface albedo bias in climate models and its association with tropical rainfall. Geophys Res Lett 44:6363–6372.  https://doi.org/10.1002/2017GL072510 CrossRefGoogle Scholar
  31. Li Y, Wang T, Zeng Z, Peng S, Lian X, Piao S (2016) Evaluating biases in simulated land surface albedo from CMIP5 global climate models. J Geophys Res 121:6178–6190.  https://doi.org/10.1002/2016JD024774 Google Scholar
  32. Livneh B, Xia YL, Mitchell KE, Ek MB, Lettenmaier DP (2010) Noah LSM snow model diagnostics and enhancements. J Hydrometeorol 11(3):721–738.  https://doi.org/10.1175/2009JHM1174.1 CrossRefGoogle Scholar
  33. Mahrt L, Ek M (1984) The influence of atmospheric stability on potential evaporation. J Clim Appl Meteorol 23:222–234.  https://doi.org/10.1175/1520-0450(1984)023%3C0222:TIOASO%3E2.0.CO;2 CrossRefGoogle Scholar
  34. Mahrt L, Pan HL (1984) A two-layer model of soil hydrology. Bound Layer Meteorol 29:1–20CrossRefGoogle Scholar
  35. Malik MJ, Velde RVD, Vekerdy Z, Su Z (2012) Assimilation of satellite-observed snow albedo in a land surface model. J Hydrometeorol 13(3):1119–1130.  https://doi.org/10.1175/JHM-D-11-0125.1 CrossRefGoogle Scholar
  36. Malik MJ, Velde RVD, Vekerdy Z, Su Z (2014) Improving modeled snow albedo estimates during the spring melt season. J Geophys Res Atmos 119:7311–7331.  https://doi.org/10.1002/2013JD021344 CrossRefGoogle Scholar
  37. McCarthy MP, Sanjay J, Booth V, Kumar KK, Betts RA (2012) The influence of vegetation on the ITCZ and South Asian monsoon in HadCM3. Earth Syst Dyn 3(1):87–96.  https://doi.org/10.5194/esd-3-87-2012 CrossRefGoogle Scholar
  38. Moody E, King M, Schaaf C, Hall D, Platnick S (2007) Northern hemisphere five-year average (2000–2004) spectral albedos of surfaces in the presence of snow: Statistics computed from Terra MODIS land products. Remote Sen Environ 111:337–345.  https://doi.org/10.1016/j.rse.2007.03.026 CrossRefGoogle Scholar
  39. Namias J (1962) Influences of abnormal heat sources and sinks on atmospheric behavior. In: Proceedings of the international symposium on numerical weather prediction. 1960, Meteorol Soc Japan, Tokyo, pp 615–627Google Scholar
  40. Pan HL, Mahrt L (1987) Interaction between soil hydrology and boundary layer development. Bound Layer Meteorol 38:185–202CrossRefGoogle Scholar
  41. Park S, Park SK (2016) Parameterization of the snow-covered surface albedo in the Noah-MP Version 1.0 by implementing vegetation effects. Geosci Model Devel 9:1073–1085.  https://doi.org/10.5194/gmd-9-1073-2016 CrossRefGoogle Scholar
  42. Pokhrel S, Dhakate A, Chaudhari HS, Saha SK (2013) Status of ncep cfs vis-a-vis ipcc ar4 models for the simulation of Indian summer monsoon. Theor Appl Climatol 111:65–78.  https://doi.org/10.1007/s00704-012-0652-8 CrossRefGoogle Scholar
  43. Qu X, Hall A (2006) Assessing snow albedo feedback in simulated climate change. J Clim 19(11):2617–2630.  https://doi.org/10.1175/JCLI3750.1 CrossRefGoogle Scholar
  44. Qu X, Hall A (2007) What controls the strength of snow-albedo feedback? J Clim 20(15):3971–3981.  https://doi.org/10.1175/JCLI4186.1 CrossRefGoogle Scholar
  45. Qu X, Hall A (2014) On the persistent spread in snow-albedo feedback. Clim Dyn 42(1–2):69–81.  https://doi.org/10.1007/s00382-013-1774-0 CrossRefGoogle Scholar
  46. Rai A, Saha SK (2018) Evaluation of energy fluxes in the NCEP climate forecast system version 2.0 (CFSv2). Clim Dyn 50:101–114.  https://doi.org/10.1007/s00382-017-3587-z 2017.CrossRefGoogle Scholar
  47. Randall DA et al (1994) Analysis of snow feedbacks in 14 general circulation models. J Geophys Res 99:20757–20771.  https://doi.org/10.1029/94JD01633 CrossRefGoogle Scholar
  48. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:2156–2202.  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  49. Reichle RH, Draper CS, Liu Q, Girotto M, Mahanama SP, Koster RD, De Lannoy GJ (2017) Assessment of MERRA-2 land surface hydrology estimates. J Clim 30:2937–2960.  https://doi.org/10.1175/JCLI-D-16-0720.1 CrossRefGoogle Scholar
  50. Robinson DA, Kukla G (1985) Maximum surface albedo of seasonally snow covered lands in the Northern Hemisphere. J Clim Appl Meteorol 24:402–411CrossRefGoogle Scholar
  51. Roeckner E, Bauml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5—part 1. Technical Report 349, Max Planck Institute for MeteorologyGoogle Scholar
  52. Roesch A (2006) Evaluation of surface albedo and snow cover in AR4 coupled climate models. J Geophy Res 111:D15111.  https://doi.org/10.1029/2005JD006473 CrossRefGoogle Scholar
  53. Roesch A, Wild M, Gilgen H, Ohmura A (2001) A new snow cover fraction parameterisation for the ECHAM4 GCM. Clim Dyn 17:933–946.  https://doi.org/10.1007/s003820100153 CrossRefGoogle Scholar
  54. Saha S et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057.  https://doi.org/10.1175/2010BAMS3001.1 CrossRefGoogle Scholar
  55. Saha SK, Pokhrel S, Chaudhari HS (2013) Influence of Eurasian snow on Indian summer monsoon in NCEP CFSv2 freerun. Clim Dyn 41:1801–1815.  https://doi.org/10.1007/s00382-012-1617-4 CrossRefGoogle Scholar
  56. Saha SK, Pokhrel S, Chaudhari HS, Dhakate A, Shewale S, Sabeerali CT, Salunke K, Hazra A, Mahaptra S, Rao AS (2014b) Improved simulation of Indian summer monsoon in latest NCEP climate forecast system free run. Int J Climatol 35:1628–1641.  https://doi.org/10.1002/joc.3791 CrossRefGoogle Scholar
  57. Saha SK, Pokhrel S, Salunke K, Dhakate A, Chaudhari HS, Rahaman H, Sujith K, Hazra A, Sikka DR (2016a) Potential predictability of Indian summer monsoon rainfall in ncep cfsv2. J Adv Model Eart Syst 8:96–120.  https://doi.org/10.1002/2015MS000542 CrossRefGoogle Scholar
  58. Saha SK, Sujith K, Pokhrel S, Chaudhari HS, Hazra A (2016b) Predictability of global monsoon rainfall in ncep cfsv2. Clim Dyn 47:1693–1715.  https://doi.org/10.1007/s00382-015-2928-z CrossRefGoogle Scholar
  59. Saha SK, Sujith K, Pokhrel S, Chaudhari HS, Hazra A (2017) Effects of multilayer snow scheme on the simulation of snow: offline Noah and coupled with NCEP CFSv2. J Adv Model Earth Syst 9.  https://doi.org/10.1002/2016MS000845
  60. Saito K, Cohen J (2003) The potential role of snow cover in forcing interannual variability of the major Northern Hemisphere mode. Geo Res Lett 30(6):1302.  https://doi.org/10.1029/2002GL016341 CrossRefGoogle Scholar
  61. Smirnova TG, Brown JM, Benjamin SG (1997) Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon Wea Rev 125:1870–1884CrossRefGoogle Scholar
  62. Sridhar V, Elliott RL, Chen F, Brotzge JA (2002) Validation of the NOAH-OSU land surface model using surface flux measurements in Oklahoma. J Geophys Res 107(D20):4418.  https://doi.org/10.1029/2001JD001306 CrossRefGoogle Scholar
  63. Swann AL, Fung SIY, Liu Y, Chiang JCH (2014) Remote vegetation feedbacks and the mid-Holocene green Sahara. J Clim 27(13):4857–4870.  https://doi.org/10.1175/JCLI-D-13-00690.1 CrossRefGoogle Scholar
  64. Thomas G, Rowntree PR (1992) The boreal forests and climate. Q J R Meteorol Soc 118:469–497.  https://doi.org/10.1002/qj.49711850505 CrossRefGoogle Scholar
  65. Vernekar AD, Zhou J, Shukla J (1995) The effect of Eurasian snow cover on the Indian Monsoon. J Clim 8:248–266.  https://doi.org/10.1175/1520-0442(1995)008%3C0248:TEOESC%3E2.0.CO;2 CrossRefGoogle Scholar
  66. Verseghy DL (1991) Class-A Canadian land surface scheme for GCMs. I: Soil model. Int J Climatol 11:111–133CrossRefGoogle Scholar
  67. Wang Z, Zeng X (2010) Evaluation of snow albedo in land models for weather and climate studies. J Appl Meteor Climatol 49:363–380.  https://doi.org/10.1175/2009JAMC2134.1 CrossRefGoogle Scholar
  68. Warren SG, Wiscombe WJ (1980) A model for the spectral albedo of snow. II: Snow containing atmospheric aerosols. J Atmos Sci 37:2734–2745CrossRefGoogle Scholar
  69. Weedon G, Balsamo G, Bellouin N, Gomes S, Best MJ, Viterbo P (2014) WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour Res 50:7505–7514.  https://doi.org/10.1002/2014WR015638 CrossRefGoogle Scholar
  70. Wielicki BA, Barkstrom BR, Harrison EF, Lee RB, Smith GL, Cooper JE (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868CrossRefGoogle Scholar
  71. Wiscombe WJ, Warren SG (1980) A model for the spectral albedo of snow. I: Pure snow. J Atmos Sci 37:2712–2733CrossRefGoogle Scholar
  72. Wu X, Simmonds I, Budd WF (1997) Modeling of Antarctic sea ice in a general circulation model. J Clim 10:593–609CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Indian Institute of Tropical MeteorologyPuneIndia

Personalised recommendations