Advertisement

New insights into the rainfall variability in the tropical Andes on seasonal and interannual time scales

  • Hans SeguraEmail author
  • Clementine Junquas
  • Jhan Carlo Espinoza
  • Mathias Vuille
  • Yakelyn R. Jauregui
  • Antoine Rabatel
  • Thomas Condom
  • Thierry Lebel
Article

Abstract

In this study, we analyze the atmospheric mechanisms associated with the main rainfall patterns in the tropical Andes (\(20^{\circ }\hbox {S}\)\(1^{\circ }\hbox {N}\)) on seasonal and interannual time scales. Using a homogeneous and high spatial resolution precipitation data set (\(0.05^{\circ }\times 0.05^{\circ }\)) at monthly time step (CHIRPS; 1981–2016), in-situ precipitation from 206 rain-gauge stations, power spectrum and EOF analysis, we identify three Andean regions characterized by specific seasonal and interannual rainfall modes: the equatorial Andes (EA, \(5^{\circ }\hbox {S}\)\(1^{\circ }\hbox {N}\)), the transition zone (TZ, \(8^{\circ }\hbox {S}\)\(5^{\circ }\hbox {S}\)) and the southern tropical Andes (STA, \(20^{\circ }\hbox {S}\)\(8^{\circ }\hbox {S}\)). On seasonal time scales, the main mode of precipitation in the EA and STA are characterized by a unimodal regime, while the TZ is represented by a bimodal regime. The EA and the TZ share the same wet season in the February–April period, which is associated with a weakened Walker Cell, the southerly position of the Intertropical Convergence Zone (ITCZ) and a strong westward humidity transport from the equatorial Amazon. This latter mechanism and a reduced elevation of the Andes are associated with the October–November wet season in the TZ. The presence of the Bolivian High and the northward extension of the Low Level Jet are associated with the precipitation over Andean regions between 20\(^{\circ }\)S and 8\(^{\circ }\)S in the December–March period. On interannual time scales, extreme monthly wet events (EMWE) in the STA (TZ) are related to convection over the western (equatorial) Amazon during the December–March (February–April) period, showing an atmospheric relationship between the Amazon and the Andes. Extreme monthly dry events (EMDE) in the TZ and in the EA during the February–April period are related to a strengthened Walker Cell, especially in the eastern Pacific. In addition, EMWE (EMDE) in the EA are associated with an anomalous southward (northward) displaced eastern Pacific ITCZ. Moreover, we find a relationship between precipitation at higher elevations in the Andes north of \(10^{\circ }\hbox {S}\) and easterly winds at 200 hPa during February–April EMWE. Finally, extreme monthly events in the EA (STA) are related to sea surface temperature anomalies in the western (central) equatorial Pacific.

Keywords

Tropical Andes Precipitation EOF analysis Atmospheric mechanisms Seasonal and interannual variability 

Notes

Acknowledgements

The first author H. S. was funded by the IRD program LMI-GREATICE, IDEX grants of University Grenoble Alpes (UGA), the VASPAT project IDEX “IRS-Initiative de Recherche Stratégique” of UGA (part of the ANR project ANR-15-IDEX-02), and PNICP-Peru funds through contract 397-PNICP-PIAP-2014. Authors from IGE acknowledge the support of the Labex OSUG@2020 (Investissements d’avenir - ANR10 LABX56). The authors are grateful to J. -E. Sicart and C. Obled for stimulating exchanges within the CYME team of IGE and to J. Ronchail and L. Li of IPSL for discussions held in the framework of H. Segura’s PhD. thesis committee.

Supplementary material

382_2018_4590_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (docx 1378 KB)
382_2018_4590_MOESM2_ESM.docx (35 kb)
Supplementary material 2 (docx 35 KB)

References

  1. Bendix A, Bendix J (2006) Heavy rainfall episodes in Ecuador during El Niño events and associated regional atmospheric circulation and SST patterns. Adv Geosci 6:43–49CrossRefGoogle Scholar
  2. Bendix J, Lauer W (1992) Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische Interpretation (Rainy seasons in ecuador and their climate-dynamic interpretation). Erdkunde 2(1992):118–134Google Scholar
  3. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12(7):1990–2009CrossRefGoogle Scholar
  4. Campozano L, Célleri R, Trachte K, Bendix J, Samaniego E (2016) Rainfall and cloud dynamics in the Andes: a Southern Ecuador case study. Adv Meteorol 2016:3192765Google Scholar
  5. Campozano L, Trachte K, Célleri R, Samaniego E, Bendix J, Albuja C, Mejia JF (2018) Climatology and teleconnections of mesoscale convective systems in an andean basin in southern ecuador: the case of the paute basin. Adv Meteorol 2018(July):1–13CrossRefGoogle Scholar
  6. Chavez SP, Takahashi K (2017) Orographic rainfall hot spots in the Andes-Amazon transition according to the TRMM precipitation radar and in situ data. J Geophys Res Atmos 122(11):5870–5882CrossRefGoogle Scholar
  7. Cramér H (1999) Mathematical methods of statistics. Princeton mathematical series. Princeton University Press, PrincetonGoogle Scholar
  8. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars AC, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, Mcnally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  9. DeMaria M (1985) Linear response of a stratified tropical atmosphere to convective forcing. J Atmos Sci 42(18):1944–1959CrossRefGoogle Scholar
  10. Espinoza JC, Chavez S, Ronchail J, Junquas C, Takahashi K, Lavado W (2015) Rainfall hotspots over the southern tropical Andes: spatial distribution, rainfall intensity, and relations with large-scale atmospheric circulation. Water Resour Res 51(5):3459–3475CrossRefGoogle Scholar
  11. Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, De Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29(11):1574–1594CrossRefGoogle Scholar
  12. Espinoza JC, Ronchail J, Lengaigne M, Quispe N, Silva Y, Bettolli ML, Avalos G, Llacza A (2012) Revisiting wintertime cold air intrusions at the east of the Andes: propagating features from subtropical Argentina to Peruvian Amazon and relationship with large-scale circulation patterns. Clim Dyn 41(7–8):1983–2002Google Scholar
  13. Espinoza JC, Ronchail J, Marengo J, Segura H (2018) Contrasting North South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). Clim Dyn.  https://doi.org/10.1007/s00382-018-4462-2 CrossRefGoogle Scholar
  14. Figueroa SN, Satyamurty P, Da Silva Dias PL (1995) Simulations of the summer circulation over the South American region with an Eta coordinate model. J Atmos Sci 52:1573–1584CrossRefGoogle Scholar
  15. Francou B, Vuille M, Favier V, Caceres B (2004) New evidence for an ENSO impact on low-latitude glaciers: Antizana 15, Andes of Ecuador, 0\(^{\circ }\)28’S. J Geophys Res Atmos 109(18):1–17Google Scholar
  16. Funk C, Peterson P, Landsfeld M, Pedreros D, Verdin J, Shukla S, Husak G, Rowland J, Harrison L, Hoell A, Michaelsen J (2015) The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci Data 2:150066CrossRefGoogle Scholar
  17. Garreaud R (1999) Multiscale analysis of the summertime precipitation over the Central Andes. Mon Weather Rev 127:901–921CrossRefGoogle Scholar
  18. Garreaud R, Aceituno P (2001) Interannual rainfall variability over the South American Altiplano. J Clim 14(1987):2779–2789CrossRefGoogle Scholar
  19. Garreaud R, Vuille M, Clement AC (2003) The climate of the Altiplano: observed current conditions and mechanisms of past changes. Palaeogeogr Palaeoclimatol Palaeoecol 194(1–3):5–22CrossRefGoogle Scholar
  20. Garreaud RD (2009) The Andes climate and weather. Adv Geosci 22:3–11CrossRefGoogle Scholar
  21. Garreaud RD, Vuille M, Compagnucci R, Marengo J (2009) Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):180–195CrossRefGoogle Scholar
  22. Gilman D, Fuglister F, Mitchell J (1963) On the power Spectrum of “Red Noise”. J Atmos Sci 20(2):182–184CrossRefGoogle Scholar
  23. Hastenrath S (2002) The intertropical convergence zone of the Eastern Pacific revisited. Int J Climatol 22(3):347–356CrossRefGoogle Scholar
  24. Horel JD, Hahmann AN, Geisler JE (1989) An investigation of the annual cycle of convective activity over the tropical Americas. J Clim 2(11):1388–1403CrossRefGoogle Scholar
  25. Houston J, Hartley AJ (2003) The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int J Climatol 23(12):1453–1464CrossRefGoogle Scholar
  26. Huang B, Banzon VF, Freeman E, Lawrimore J, Liu W, Peterson TC, Smith TM, Thorne PW, Woodruff SD, Zhang HM (2015) Extended reconstructed sea surface temperature version 4 (ERSSTv4) Part I: Upgrades and intercomparisons. J Clim 28(3):911–930CrossRefGoogle Scholar
  27. Hurley JV, Vuille M, Hardy DR (2016) Forward modeling of \(\delta\)18O in Andean ice cores. Geophys Res Lett 43(15):8178–8188CrossRefGoogle Scholar
  28. Jauregui YR, Takahashi K (2017) Simple physical-empirical model of the precipitation distribution based on a tropical sea surface temperature threshold and the effects of climate change. Clim Dyn 50:1–21Google Scholar
  29. Junquas C, Li L, Vera CS, Le Treut H, Takahashi K (2016) Influence of South America orography on summertime precipitation in Southeastern South America. Clim Dyn 47(9–10):3389–3390CrossRefGoogle Scholar
  30. Krishnamurti TN, Kanamitsu M, Koss WJ, Lee JD (1973) Tropical East–West circulations during the northern winter. J Atmos Sci 30(5):780–787CrossRefGoogle Scholar
  31. Lagos P, Silva Y, Nickl E, Mosquera K (2008) El Nino related precipitation variability in Peru. Adv Geosci 3:231–237CrossRefGoogle Scholar
  32. Laraque A, Ronchail J, Cochonneau G, Pombosa R, Guyot JL (2007) Heterogeneous distribution of rainfall and discharge regimes in the Ecuadorian Amazon Basin. J Hydrometeorol 8(6):1364–1381CrossRefGoogle Scholar
  33. Lavado W, Espinoza JC (2014) Impactos de El Niño y La Niña en las lluvias del Perú (1965–2007). Rev Bras Meteorol 29:171–182CrossRefGoogle Scholar
  34. Lenters JD, Cook KH (1997) On the origin of the bolivian high and related circulation features of the South American climate. J Atmos Sci 54(5):656–678CrossRefGoogle Scholar
  35. Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. Scientific report/Massachusetts Institute of Technology. Statistical Forecasting Project, Massachusetts Institute of Technology, Department of Meteorology, CambridgeGoogle Scholar
  36. Paccini L, Espinoza JC, Ronchail J, Segura H (2018) Intra-seasonal rainfall variability in the Amazon basin related to large-scale circulation patterns: a focus on western AmazonAndes transition region. Int J Climatol 38(5):2386–2399CrossRefGoogle Scholar
  37. Rau P, Bourrel L, Labat D, Melo P, Dewitte B, Frappart F, Lavado W, Felipe O (2017) Regionalization of rainfall over the Peruvian Pacific slope and coast. Int J Climatol 37(1):143–158CrossRefGoogle Scholar
  38. Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99(2):277–289CrossRefGoogle Scholar
  39. Schwendike J, Berry GJ, Reeder MJ, Jakob C, Govekar P, Wardle R (2015) Trends in the local Hadley and local Walker circulations. J Geophys Res 120(15):7599–7618Google Scholar
  40. Segura H, Espinoza JC, Junquas C, Takahashi K (2016) Evidencing decadal and interdecadal hydroclimatic variability over the Central Andes. Environ Res Lett 11(9):094016CrossRefGoogle Scholar
  41. Sicart JE, Espinoza JC, Quéno L, Medina M (2016) Radiative properties of clouds over a tropical Bolivian glacier: seasonal variations and relationship with regional atmospheric circulation. Int J Climatol 36(8):3116–3128CrossRefGoogle Scholar
  42. Silva Dias PL, Schubert WH, DeMaria M (1983) Large-scale response of the tropical atmosphere to transient convection. J Atmos Sci 40(11):2689–2707CrossRefGoogle Scholar
  43. Sulca J, Takahashi K, Espinoza JC, Vuille M, Lavado-Casimiro W (2018) Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int J Climatol 38(1):420–435CrossRefGoogle Scholar
  44. Takahashi K, Martínez AG (2017) The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim Dyn.  https://doi.org/10.1007/s00382-017-3702-1 CrossRefGoogle Scholar
  45. Tanaka HL, Ishizaki N, Kitoh A (2004) Trend and interannual variability of Walker, monsoon and Hadley circulations defined by velocity potential in the upper troposphere. Tellus Ser A Dyn Meteorol Oceanogr 56(3):250–269CrossRefGoogle Scholar
  46. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(9):1055–1096CrossRefGoogle Scholar
  47. Tobar V, Wyseure G (2018) Seasonal rainfall patterns classification, relationship to ENSO and rainfall trends in Ecuador. Int J Climatol 38(4):1808–1819CrossRefGoogle Scholar
  48. Vera C, Higgins W, Amador J, Ambrizzi T, Garreaud R, Gochis D, Gutzler D, Lettenmaier D, Marengo J, Mechoso CR, Nogues-Paegle J, Dias PLS, Zhang C (2006) Toward a unified view of the American monsoon systems. J Clim 19(20):4977–5000CrossRefGoogle Scholar
  49. Vicente-Serrano SM, Aguilar E, Martínez R, Martín-Hernández N, Azorin-Molina C, Sanchez-Lorenzo A, El Kenawy A, Tomás-Burguera M, Moran-Tejeda E, López-Moreno JI, Revuelto J, Beguería S, Nieto JJ, Drumond A, Gimeno L, Nieto R (2017) The complex influence of ENSO on droughts in Ecuador. Clim Dyn 48(1–2):405–427CrossRefGoogle Scholar
  50. Virji H (1981) A preliminary study of summertime tropospheric circulation patterns over South America estimated from cloud winds. Mon Weather Rev 109(3):599–610CrossRefGoogle Scholar
  51. Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the southern oscillation. Int J Climatol 19:1579–1600CrossRefGoogle Scholar
  52. Vuille M, Bradley RS, Keimig F (2000) Climate variability in the andes of ecuador and its relation to tropical Pacific and Atlantic sea surface temperature anomalies. J Clim 13:2520–2535CrossRefGoogle Scholar
  53. Vuille M, Hardy DR, Braun C, Keimig F, Bradley RS (1998) Atmospheric circulation anomalies associated with 1996/1997 summer precipitation events on Sajama Ice Cap. Bolivia J Geophys Res 103(D10):11191CrossRefGoogle Scholar
  54. Vuille M, Kaser G, Juen I (2008) Glacier mass balance variability in the Cordillera Blanca, Peru and its relationship with climate and the large-scale circulation. Glob Planet Change 62(1–2):14–28CrossRefGoogle Scholar
  55. Vuille M, Keimig F (2004) Interannual variability of summertime convective cloudiness and precipitation in the central Andes derived from ISCCP-B3 data. J Clim 17:3334–3348CrossRefGoogle Scholar
  56. Xie SP, Peng Q, Kamae Y, Zheng XT, Tokinaga H, Wang D (2018) Eastern pacific ITCZ dipole and ENSO diversity. J Clim 31(11):4449–4462CrossRefGoogle Scholar
  57. Zhou J, Lau KM (1998) Does a monsoon climate exist over South America? J Clim 11(5):1020–1040CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Univ. Grenoble Alpes, IRD, CNRS, G-INP, IGE (UMR 5001)GrenobleFrance
  2. 2.Instituto Geofísico del Perú (IGP)LimaPeru
  3. 3.Department of Atmospheric and Environmental SciencesState University of New York at AlbanyAlbanyUSA
  4. 4.Department of Atmospheric SciencesUniversity of WashingtonSeattleUSA

Personalised recommendations