Advertisement

Climate Dynamics

, Volume 53, Issue 1–2, pp 329–352 | Cite as

Obtaining best parameterization scheme of RegCM 4.4 for aerosols and chemistry simulations over the CORDEX South Asia

  • P. Ajay
  • B. PathakEmail author
  • F. Solmon
  • P. K. Bhuyan
  • F. Giorgi
Article

Abstract

The regional climate model RegCM 4.4 at 50 km resolution is used to conduct a sensitivity study over South Asia Coordinated Regional climate Downscaling Experiment domain during the period 1998–2002, in order to investigate the best cumulus convective precipitation scheme, planetary boundary layer (PBL) and land-surface scheme. The inferences obtained from 11 sensitivity experiments include the better performance of community land model version 4.5 (CLM 4.5) over biosphere–atmosphere transfer scheme, Tiedtke as cumulus convective precipitation scheme and University of Washington (UW) as PBL scheme. The simulation with these parameterization schemes well captures the monsoon precipitation pattern over India ~ 7 mm/day and North Eastern Region of India (NER) ~ 12 mm/day, which are comparable to observations with a significant correlation of R2 > 0.93. The observed temperatures are also well simulated by the model. Therefore, RegCM 4.4 with these parameterization schemes is further used to simulate the aerosol fields (aerosol optical depth, AOD and black carbon, BC) and aerosol direct radiative forcing (DRF) for the period 2011–2014 over the same domain with special emphasis on NER. The model captures the seasonality in AOD and BC over the Indian Subcontinent and NER. BC hotspots in the Indo-Gangetic Plain and China are well captured by the model. The observed to simulated BC ratio over Dibrugarh (located in NER) is found to be improved. The model underestimation is significant in the dry season when burning over the region is predominant, which has not been considered by the emission inventories properly. Simulated DRF is found to exhibit seasonality qualitatively as well as a North–South latitudinal gradient.

Keywords

Regional climate model CORDEX South Asia Sensitivity test Aerosol DRF 

Notes

Acknowledgements

The authors are thankful to the RegCM, ERA-Interim, TRMM, CRU, IMD, GPCP and MODIS science team. The ground based data are obtained from four ARFINET stations maintained by ISRO under its Geosphere-Biosphere Programme, in North-East India. BP is a Junior Associate in the ICTP, Trieste and thankful to ICTP for providing access to their computational system. AP is grateful to ISRO-GBP ARFI for providing him fellowship to undertake the work. This work is partly supported by the UGC SAP DRS II programme. PKB is an Emeritus Professor under UGC. Authors are sincerely grateful to the anonymous referees for their valuable suggestions in improving the manuscript.

References

  1. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167.  https://doi.org/10.1175/15257541(2003)004%3C1147:TVGPCP%3E2.0.CO;2 Google Scholar
  2. Almazroui M (2012) Dynamical downscaling of rainfall and temperature over the Arabian Peninsula using RegCM4. Clim Res 52:49–62.  https://doi.org/10.3354/cr01073 Google Scholar
  3. Anyah RO, Semazzi FHM (2007) Variability of East African rainfall based on multiyear RegCM3 simulations. Int J Climatol 27:357–371.  https://doi.org/10.1002/joc.1401 Google Scholar
  4. Artale V, Calmanti S, Carillo A, Dell’Aquila A, Hersmann M, Pisacane G, Ruti PM, Sannino G, Struglia MV, Giorgi F, Bi X, Pal JS, Rauscher S (2010) An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn 35:721–740.  https://doi.org/10.1007/s00382-009-0691-8 Google Scholar
  5. Babu SS, Manoj MR, Moorthy KK, Gogoi MM, Nair VS, Kompalli SK, Satheesh SK, Niranjan K, Ramagopal K, Bhuyan PK, Singh D (2013) Trends in aerosol optical depth over Indian region: potential causes and impact indicators. J Geophys Res 118:11794–11806.  https://doi.org/10.1002/2013JD020507 Google Scholar
  6. Basit A, Shoaib SR, Irfan N, Avila R (2012) Simulation of monsoon precipitation over South-Asia using RegCM3. ISRN Meteorol 12:754902.  https://doi.org/10.5402/2012/754902 Google Scholar
  7. Beegum SN, Moorthy KK, Nair VS, Babu SS, Satheesh SK, Vinoj V, Reddy RR, Gopal KR, Badarinath KVS, Niranjan K, Pandey SK, Behera M, Jeyaram A, Bhuyan PK, Gogoi MM, Singh S, Pant P, Dumka UC, Kant Y, Kuniyal JC, Singh D (2008) Characteristics of spectral aerosol optical depths over India during ICARB. J Earth Syst Sci 117(S1):303–313.  https://doi.org/10.1007/s12040-008-0033-y Google Scholar
  8. Bhatla R, Ghosh S, Mandal B, Mall RK, Sharma K (2016) Simulation of Indian summer monsoon onset with different parameterization convection schemes of RegCM-4.3. Atmos Res 176–177:10–18.  https://doi.org/10.1016/j.atmosres.2016.02.010 Google Scholar
  9. Biswas J, Pathak B, Patadia F, Bhuyan PK, Gogoi MM, Babu SS (2017) Satellite-retrieved direct radiative forcing of aerosols over North-East India and adjoining areas: climatology and impact assessment. Int J Climatol 37:4756.  https://doi.org/10.1002/joc.5325 Google Scholar
  10. Bollasina MA, Ming Y, Ramaswamy V (2011) Anthropogenic aerosols and the weakening of the south Asian summer monsoon. Science 334:502–505.  https://doi.org/10.1126/science.1204994 Google Scholar
  11. Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim S, Schultz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda S, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender S (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118:1–173.  https://doi.org/10.1002/jgrd.50171 Google Scholar
  12. Bretherton CS, McCaa JR, Grenier H (2004) A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. I. Description and 1D results. Mon Weather Rev 132:864–882.  https://doi.org/10.1175/1520-0493(2004)132%3C0864:ANPFSC%3E2.0.CO;2 Google Scholar
  13. Chen M, Pollard D, Barron EJ (2003) Comparison of future climate change over North America simulated by two regional models. J Geophys Res Atmos 108:4348.  https://doi.org/10.1029/2002JD002738 Google Scholar
  14. Cossarini G, Salon S, Libralato S, Gao XJ, Giorgi F, Solidoro C (2008) A downscaling experiment for the lagoon of Venice. Part II: testing potential impacts of changes in precipitation patterns on biogeochemical properties. Clim Res 38:43–59.  https://doi.org/10.3354/cr00758 Google Scholar
  15. Dahutia P, Pathak B, Bhuyan PK (2018) Aerosols characteristics, trends and their climatic implications over northeast India and adjoining South Asia. Int J Climatol 38:1234–1256.  https://doi.org/10.1002/joc.5240 Google Scholar
  16. Das S, Dey S, Dash S (2015a) Impacts of aerosols on dynamics of India summer monsoon using a regional climate model. Clim Dyn 44(5–6):1685–1697Google Scholar
  17. Das S, Dey S, Dash S, Diuliani G, Solmon F (2015b) Dust aerosol feedback on the Indian summer monsoon: sensitivity to absorption property. J Geophys Res Atmos 120(18):9642–9652Google Scholar
  18. Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86:161–172.  https://doi.org/10.1007/s00704-006-0204-1 Google Scholar
  19. Dash SK, Rai S, Mohanty UC, Panda SK (2011) Monthly and seasonal Indian summer monsoon simulated by RegCM3 at high resolutions. In: Attri S, Rathore L, Sivakumar M, Dash S (eds) Challenges and opportunities in agrometeorology. Springer, Berlin.  https://doi.org/10.1007/978-3-642-19360-6_2 Google Scholar
  20. Dash SK, Mamgain A, Pattnayak KC, Giorgi F (2013) Spatial and temporal variations in Indian summer monsoon rainfall and temperature: an analysis based on RegCM3 simulations. Pure Appl Geophys 170:1–20.  https://doi.org/10.1007/s00024-012-0567-4 Google Scholar
  21. Dash SK, Mishra SK, Pattnayak KC, Mamgain A, Mariotti L, Coppola E, Giorgi F, Giuliani G (2014a) Projected seasonal mean summer monsoon over India and adjoining regions for the twenty-first century. Theor Appl Climatol 122:581–593.  https://doi.org/10.1007/s00704-014-1310-0 Google Scholar
  22. Dash SK, Pattnayak KC, Panda SK, Vaddi D, Mamgain A (2014b) Impact of domain size on the simulation of Indian summer monsoon in RegCM4 using mixed convection scheme and driven by HadGEM2. Clim Dyn 44:961.  https://doi.org/10.1007/s00382-014-2420-1 Google Scholar
  23. Dethloff K, Abegg C, Rinke A, Hebestadt I, Romanov VF (2001) Sensitivity of Arctic climate simulations to different boundary-layer parameterizations in a regional climate model. Tellus 53:1–26.  https://doi.org/10.1034/j.1600-0870.2001.01073.x Google Scholar
  24. Devanand A, Ghosh S, Paul S, Karmakar S, Niyogi D (2018) Multi-ensemble regional simulation of Indian monsoon during contrasting rainfall years: role of convective schemes and nested domain. Clim Dyn 50:4127–4147.  https://doi.org/10.1007/s00382-017-3864-x Google Scholar
  25. Dickerson RR, Andreae MO, Campos T, Mayol-Bracero OL, Neusuess C, Streets DG (2002) Analysis of black carbon and carbon monoxide observed over the Indian Ocean: implications for emissions and photochemistry. J Geophys Res 107(D19):8017.  https://doi.org/10.1029/2001JD000501 Google Scholar
  26. Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for the western United States. Clim Change 15:383–422.  https://doi.org/10.1007/BF00240465 Google Scholar
  27. Dickinson RE, Sellers HA, Kennedy PJ (1993) Biosphere atmosphere transfer scheme (BATS) version 1E as coupled to the NCAR community climate model. Technical note NCAR/TN-3871 STR, p 72.  https://doi.org/10.5065/D67W6959
  28. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335.  https://doi.org/10.1175/1520-0469(1991)048%3C2313:ASFRCC%3E2.0,CO;2 Google Scholar
  29. Emanuel KA, Rothman MZ (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782.  https://doi.org/10.1175/1520-0469(1991)056%3C1766:DAEOAC%3E2.0.CO;2 Google Scholar
  30. Esau I, Zilitinkevich S (2010) On the role of the planetary boundary layer depth in climate system. Adv Sci Res 4:63–69.  https://doi.org/10.5194/asr-4-63-2010 Google Scholar
  31. Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part I: convective parameterization. J Atmos Sci 37:1722–1733Google Scholar
  32. Ganguly D, Rasch PJ, Wang H, Yoon JH (2012) Climate response of the south Asian monsoon system to anthropogenic aerosols. J Geophys Res Atmos.  https://doi.org/10.1029/2012JD017508 Google Scholar
  33. Gao X, Xu Y, Zhao Z, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185.  https://doi.org/10.1007/s00704-005-0214-4 Google Scholar
  34. Gautam R, Liu Z, Singh RP, Hsu NC (2009) Two contrasting dust-dominant periods over India observed from MODIS and CALIPSO data. Geophys Res Lett 36:L06813.  https://doi.org/10.1029/2008GL036967 Google Scholar
  35. Gautam R, Hsu NC, Lau KM (2010) Premonsoon aerosol characterization and radiative effects over the Indo-Gangetic Plains: implications for regional climate warming. J Geophys Res 115:D17208.  https://doi.org/10.1029/2010JD013819 Google Scholar
  36. Giorgi F, Marinucci MR (1991) Validation of a regional atmospheric model over Europe: sensitivity of wintertime and summertime simulations to selected physics parameterization and lower boundary conditions. Q J R Meteorol Soc 117:1171–1206.  https://doi.org/10.1002/qj.49711750204 Google Scholar
  37. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352.  https://doi.org/10.1029/98JD02072 Google Scholar
  38. Giorgi F, Mearns LO (2003) Probability of regional climate change based on the reliability ensemble averaging (REA) method. Geophys Res Lett 30:1629.  https://doi.org/10.1029/2003GL017130 Google Scholar
  39. Giorgi F, Marinucci MR, Bates GT, Canio GD (1993) Development of a second-generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832.  https://doi.org/10.1175/1520-0493(1993)121%3C2814:DOASGR%3E2.0.CO;2 Google Scholar
  40. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla MB, Bi X, Elguindi N, Diro GY, Nair V, Giuliani G, Turuncoglu UU, Cozzini S, Guttler I, O’Brien TA, Tawfik AB, Shalaby A, Zakey AS, Steiner F, Stordal F, Sloan LC, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29.  https://doi.org/10.3354/cr01018 Google Scholar
  41. Gogoi MM, Bhuyan PK, Moorthy KK (2007) Possible impact of a major oil-well fire on aerosol optical depth at Dibrugarh. Curr Sci 92(8):1047–1049Google Scholar
  42. Gogoi MM, Babu SS, Moorthy KK, Bhuyan PK, Pathak B, Subba T, Chutia L, Kundu SS, Bharali C, Borgohain A, Guha A, De BK, Singh B, Chin M (2017) Radiative effects of absorbing aerosols over northeastern India: observations and model simulations. J Geophys Res 122:1132–1157.  https://doi.org/10.1002/2016JD025592 Google Scholar
  43. Goto D, Takemura T, Nakajima T, Badarinath KVS (2011) Global aerosol model-derived black carbon concentration and single scattering albedo over Indian region and its comparison with ground observations. Atmos Environ 45:3277–3285.  https://doi.org/10.1016/j.atmosenv.2011.03.037 Google Scholar
  44. Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787Google Scholar
  45. Grell GA, Dudhia J, Stauffer DR (1994) A description of the fifth generation Penn State/NCAR mesoscale model (MM5). NCAR Technical note NCAR/TN-380 + STRGoogle Scholar
  46. Grenier H, Bretherton CS (2001) A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon Weather Rev 129:357–377.  https://doi.org/10.1175/1520-0493(2001)129%3C0357:AMPPFL%3E2.0.CO;2 Google Scholar
  47. Guttler I, Brankovic C, O’Brien TA, Coppola E, Grisogono B, Giorgi F (2014) Sensitivity of the regional climate model RegCM4.2 to planetary boundary layer parameterization. Clim Dyn 43:1753–1772.  https://doi.org/10.1007/s00382-013-2003-6 Google Scholar
  48. Halder S, Dirmeyer P, Saha K (2015) Sensitivity of the mean and variability of indian summer monsoon to land surface schemes in RegCM4: understanding coupled land-atmosphere feedbacks. J Geophys Res 120:9437–9458.  https://doi.org/10.1002/2015JD023101 Google Scholar
  49. Hansen ADA, Rosen H, Novakov T (1984) The Aethalometer—An instrument for the real-time measurement of optical absorption by aerosol particles. Sci Total Environ 36:191–196Google Scholar
  50. Holtslag AAM, Brujin EIFD, Pan HL (1990) A high-resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575.  https://doi.org/10.1175/1520-0493(1990)118%3C1561:AHRAMT%3E2.0.CO;2 Google Scholar
  51. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM multi-satellite precipitation analysis: quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J Hydrometeorol 8:38–55.  https://doi.org/10.1175/JHM560.1 Google Scholar
  52. Islam MN, Almazroui M (2012) Direct effects and feedback of desert dust on the climate of the Arabian Peninsula during the wet season: a regional climate model study. Clim Dyn 39:2239–2250.  https://doi.org/10.1007/s00382-012-1293-4 Google Scholar
  53. Jethva H, Satheesh SK, Srinivasan J, Moorthy KK (2009) How good is the assumption about visible surface reflectance in MODIS aerosol retrieval over land? A comparison with aircraft measurements over an urban site in India. IEEE Trans Geosci Remote Sens 47:1990–1998.  https://doi.org/10.1109/TGRS.2008.2010221 Google Scholar
  54. Kain JS, Fritsch JM (1993) Convective parameterization for mesoscale models: the kain-fritsch scheme. In: Emanuel KA, Raymond J (eds) The representation of cumulus convection in numerical models. Meteorological Monographs. American Meteorological Society, Boston, MA.  https://doi.org/10.1007/978-1-935704-13-3_16
  55. Kang S, Im ES, Ahn JB (2014) The impact of two land-surface schemes on the characteristics of summer precipitation over East Asia from the RegCM4 simulations. Int J Climatol 34: 3986–3997.  https://doi.org/10.1002/joc.3998 Google Scholar
  56. Kiehl JT, Hack JJ, Bonan GB, Boville BA, Breigleb BP, Williamson D, Rasch P (1996) Description of the NCAR community climate model (CCM3). NCAR Technical note NCAR/TN-420 + STR, p 152Google Scholar
  57. Kinne S et al (2006) An AeroCom initial assessment—optical properties in aerosol component modules of global models. Atmos Chem Phys 6:1815–1834.  https://doi.org/10.5194/acp-6-1815-2006 Google Scholar
  58. Koch D et al (2009) Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys 9:9001–9026.  https://doi.org/10.5194/acp-99001-2009 Google Scholar
  59. Kompalli SK, Babu SS, Moorthy KK (2010) Inter-comparison of aerosol optical depth from the multi-wavelength solar radiometer with other radiometric measurements. Indian J Radio Space Phys 39:364–371. http://nopr.niscair.res.in/handle/123456789/10930
  60. Kumar R, Naja M, Pfister GG, Barth MC, Brasseur GP (2012a) Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRF-Chem): set-up and meteorological evaluation. Geosci Model Dev 5:321–343.  https://doi.org/10.5194/gmd-5-321-2012 Google Scholar
  61. Kumar R, Naja M, Pfister GG, Barth MC, Wiedinmyer C, Brasseur GP (2012b) Simulations over South Asia using the Weather Research and Forecasting model with Chemistry (WRFChem): chemistry evaluation and initial results. Geosci Model Dev 5:619–648.  https://doi.org/10.5194/gmd-5-619-2012 Google Scholar
  62. Kumar R, Barth MC, Pfister GG, Nair VS, Ghude SD, Ojha N (2015) What controls the seasonal cycle of black carbon aerosols in India? J Geophys Res Atmos 120:7788–7812.  https://doi.org/10.1002/2015JD023298 Google Scholar
  63. Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10:7017–7039.  https://doi.org/10.5194/acp-10-7017-2010 Google Scholar
  64. Lau KM, Kim MK, Kim KM (2006) Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Clim Dyn 26:855–864.  https://doi.org/10.1007/s00382-006-0114-z Google Scholar
  65. Lee SW, Lee DK, Chang DE (2011) Impact of horizontal resolution and cumulus parameterization scheme on the simulation of heavy rainfall events over the Korean Peninsula. Adv Atmos Sci 28:1–15Google Scholar
  66. Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6:989–3034.  https://doi.org/10.5194/amt-6-2989-2013 Google Scholar
  67. Li Z, Zhao X, Kahn R, Mishchenko M, Remer L, Lee KH, Wang M, Laszlo I, Nakajima T, Maring H (2009) Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective. Ann Geophys 27:2755–2770.  https://doi.org/10.5194/angeo-27-2755-2009 Google Scholar
  68. Liou KN (1980) An introduction to atmospheric radiation. Harcourt Brace Jovanovich, New York, p 392Google Scholar
  69. Liu Y, Ding Y (2007) Sensitivity study of the South China Sea summer monsoon in 1998 to different cumulus parameterization schemes. Adv Atmos Sci 24:360–376.  https://doi.org/10.1007/s00376-007-0360 Google Scholar
  70. Lodh A (2015) Impact of Caspian Sea drying on Indian monsoon precipitation and temperature as simulated by RegCM4 model. Hydrol Curr Res 6:217.  https://doi.org/10.4172/2157-7587.1000217 Google Scholar
  71. Lucas-Picher P, Christensen JH, Saeed F, Kumar P, Asharaf S, Ahrens B, Wiltshire AJ, Jacob D, Hagemann S (2011) Can regional climate models represent the Indian monsoon? J Hydrometeorol 12:849–868.  https://doi.org/10.1175/2011JHM1327.1 Google Scholar
  72. Ma Y, Zeng XM, Zhang Y (2017) Impact of the choice of land surface scheme on a simulated heatwave event: the case of Sichuan–Chongqing area, China. Adv Meteorol.  https://doi.org/10.1155/2017/9545896 Google Scholar
  73. Maurya RKS, Sinha P, Mohanty PR, Mohanty UC (2018) RegCM4 model sensitivity to horizontal resolution and domain size in simulating the Indian summer monsoon. Atmos Res 210:15–33.  https://doi.org/10.1016/j.atmosres.2018.04.010 Google Scholar
  74. Michael M, Yadav A, Tripathi SN, Kanawade VP, Gaur A, Sadavarte P, Venkataraman C (2014) Simulation of trace gases and aerosols over the Indian domain: evaluation of the WRF-Chem model. Geosci Model Dev 7:431–482.  https://doi.org/10.5194/gmdd-7-431-2014 Google Scholar
  75. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712.  https://doi.org/10.1002/joc.1181 Google Scholar
  76. Moorthy K, Nair K, Prabha R, Murthy BVK (1989) Multiwavelength solar radiometer network and features of aerosol spectral optical depth at Trivandrum. IJRSP 18:194–201Google Scholar
  77. Moorthy KK, Sunilkumar SV, Pillai PS, Parameswaran K, Nair PR, Ahmed YN, Ramgopal K, Narasimhulu K, Reddy RR, Vinoj V, Satheesh SK, Niranjan K, Rao BM, Brahmanandam PS, Saha A, Badarinath KVS, Kiranchand TR, Latha KM (2005) Wintertime spatial characteristics of boundary layer aerosols over peninsular India. J Geophys Res 110:D08207.  https://doi.org/10.1029/2004JD005520 Google Scholar
  78. Mukhopadhyay P, Taraphdar S, Goswami BN, Krishnakumar K (2010) Indian summer monsoon precipitation climatology in a high-resolution regional climate model: impacts of convective parameterization on systematic biases. Weather Forecast 25:369–387.  https://doi.org/10.1175/2009WAF2222320.1 Google Scholar
  79. Nair VS et al (2007) Winter time aerosol characteristics over the IndoGangetic Plain (IGP): impacts of local boundary layer processes and long-range transport. J Geophys Res 112:D13205.  https://doi.org/10.1029/2006JD008099 Google Scholar
  80. Nair VS, Babu SS, Moorthy KK (2008) Spatial distribution and spectral characteristics of aerosol single scattering albedo over the Bay of Bengal inferred from shipborne measurements. Geophys Res Lett 35:L10806.  https://doi.org/10.1029/2008GL033687 Google Scholar
  81. Nair VS, Solmon F, Giorgi F, Mariotti L, Babu SS, Moorthy KK (2012) Simulation of South Asian aerosols for regional climate studies. J Geophys Res 117:D04209.  https://doi.org/10.1029/2011JD016711 Google Scholar
  82. Nair VS, Babu S, Manoj MR, Moorthy KK, Chin M (2016) Direct radiative effects of aerosols over South Asia from observations and modeling. Clim Dyn 47:1–18.  https://doi.org/10.1007/s00382-016-3384-0 Google Scholar
  83. Nayak S, Mandal M, Maity S (2017) Customization of regional climate model (RegCM4) over Indian region. Theor Appl Climatol 127:153–168.  https://doi.org/10.1007/s00704-015-1630-8 Google Scholar
  84. O’Brien TA, Chuang PY, Sloan LC, Faloona IC, Rossiter DL (2012) Coupling a new turbulence parametrization to RegCM adds realistic stratocumulus clouds. Geosci Mod Dev 5:989–1008.  https://doi.org/10.5194/gmd-5-989-2012 Google Scholar
  85. Oh SG, Suh MS, Cha DH (2013) Impact of lateral boundary conditions on precipitation and temperature extremes over South Korea in the CORDEX regional climate simulation using RegCM4. Asia Pac J Atmos Sci 49:497–509.  https://doi.org/10.1007/s0013143-013-0044-8 Google Scholar
  86. Ohara T, Akimoto H, Kurokawa J, Horii N, Yamaji K, Yan X, Hayasaka T (2007) An Asian emission inventory of anthropogenic emission sources for the period 1980–2020. Atmos Chem Phys 7:4419–4444.  https://doi.org/10.5194/acp-7-4419-2007 Google Scholar
  87. Ojha N, Pozzer A, Rauthe-Sch¨och A, Baker AK, Yoon J, Brenninkmeijer CAM, Lelieveld J (2016) Ozone and carbon monoxide over India during the summer monsoon: regional emissions and transport. Atmos Chem Phys 16:3013–3032.  https://doi.org/10.5194/acp-16-3013-2016 Google Scholar
  88. Oleson K, Lawrence DM (2013) Technical description of version 4.5 of the community land model (CLM). NCAR Technical note NCAR/TN-503 + STR, National Center for Atmospheric Research, Boulder, CO.  https://doi.org/10.5065/D6RR1W7M
  89. Park JH, Oh SG, Suh MS (2013) Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asian domain. J Geophys Res 118:1652–1667.  https://doi.org/10.1002/jgrd.50159 Google Scholar
  90. Pathak B, Bhuyan PK (2014) Absorbing and scattering properties of boundary layer aerosols over Dibrugarh, Northeast India. Int J Remote Sens 35:5527–5543.  https://doi.org/10.1080/01431161.2014.926424 Google Scholar
  91. Pathak B, Kalita G, Bhuyan K, Bhuyan PK, Moorthy KK (2010) Aerosol temporal characteristics and the resulting impact on radiative forcing at a location in the northeast India. J Geophys Res 115:D19204.  https://doi.org/10.1029/2009JD013462 Google Scholar
  92. Pathak B, Subba T, Dahutia P, Bhuyan PK, Moorthy KK, Gogoi MM, Babu SS, Chutia L, Ajay P, Biswas J, Bharali C, Borgohain A, Dhar P, Guha A, De BK, Banik T, Chakraborty M, Kundu SS, Sudhakar S, Singh SB (2016) Aerosol characteristics in north-east India using ARFINET spectral optical depth measurements. Atmos Environ 125:461–473.  https://doi.org/10.1016/j.atmosenv.2015.07.038 Google Scholar
  93. Quijano AL, Sokolik IN, Toon OB (2000) Radiative heating rates and direct radiative forcing by mineral dust in a cloudy atmospheric conditions. J Geophys Res 105:207–219.  https://doi.org/10.1029/2000JD900047 Google Scholar
  94. Rahman MM, Islam MN, Ahmed AU, Afroz R (2007a) Comparison of RegCM3 simulated meteorological parameters in Bangladesh: part I-preliminary result for rainfall. Sri Lankan J Phys 8:1–9.  https://doi.org/10.4038/sljp.v8i0.208 Google Scholar
  95. Rahman MM, Islam MN, Ahmed AU, Afroz R (2007b) Comparison of RegCM3 simulated meteorological parameters in Bangladesh: part II-preliminary result for temperature. Sri Lankan J Phys 8:11–19.  https://doi.org/10.4038/sljp.v8i0.209 Google Scholar
  96. Rajeevan M, Bhate J (2009) A high resolution daily gridded rainfall dataset (1971–2005) for mesoscale meteorological studies. Curr Sci 96(4):558–562Google Scholar
  97. Rajendran K, Nanjundiah RS, Srinivasan J (2002) Comparison of seasonal and intraseasonal variation of tropical climate in NCAR CCM2 GCM with two different cumulus schemes. Meteorol Atmos Phys 79:57–86Google Scholar
  98. Raju PVS, Bhatla R, Almazroui M, Assiri M (2015) Performance of convection schemes on the simulation of summer monsoon features over the CORDEX South Asia domain using RegCM-4.3. Int J Climatol 35:4695–4706.  https://doi.org/10.1002/joc.4317 Google Scholar
  99. Rakesh V, Singh R, Joshi PC (2009) Intercomparison of the performance of MM5/WRF with and without satellite data assimilation in short-range forecast applications over the Indian region. Meteorol Atmos Phys 105:133–155.  https://doi.org/10.1007/s00703-009-0038-3 Google Scholar
  100. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci USA 102:5326–5333Google Scholar
  101. Ratnam VJ, Kumar KK (2005) Sensitivity of the simulated monsoon of 1987 and 1988 to convective parameterization schemes in MM5. J Clim 18:2724–2743Google Scholar
  102. Reddy MS, Boucher O, Venkataraman C, Verma S, Le’on J-F, Bellouin N, Pham M (2004) General circulation model estimates of aerosol transport and radiative forcing during the Indian Ocean experiment. J Geophys Res 109:D16205.  https://doi.org/10.1029/2004JD004557 Google Scholar
  103. Remer LA, Kaufman YJ, Tanré D, Mattoo S, Chu DA, Martins JV, Li RR, Ichoku C, Levy RC, Kleidman RG, Eck TF, Vermote E, Holben BN (2005) The MODIS aerosol algorithm, products and validation. J Atmos Sci 62:947–973.  https://doi.org/10.1029/2001GL013204 Google Scholar
  104. Remer LA, Kleidman RG, Levy RC, Kaufman YJ, Tanré D, Mattoo S, Martins JV, Ichoku C, Koren I, Yu H, Holben B (2008) Global aerosol climatology from the MODIS satellite sensors. J Geophys Res 113:D14S07.  https://doi.org/10.1029/2007JD009661 Google Scholar
  105. Ricchiazzi P, Yang S, Gautier C, Sowle D (1998) SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull Am Meteorol Soc 79:2101–2114.  https://doi.org/10.1175/1520-0477(1998)079%3C2101:SARATS%3E2.0.CO;2 Google Scholar
  106. Saeed F, Hagemann S, Jacob D (2009) Impact of irrigation on the South Asian summer monsoon. Geophys Res Lett 36:1–7.  https://doi.org/10.1029/2009GL040625 Google Scholar
  107. Salon S, Cossarini G, Libralato S, Gao XJ, Solidoro C, Giorgi F (2008) A downscaling experiment for the lagoon of Venice. Part I: validation of the present day precipitation climatology. Clim Res 38:31–41.  https://doi.org/10.3354/cr00757 Google Scholar
  108. Shin SH, Ha KJ (2007) Effects of spatial and temporal variations in PBL depth on a GCM. J Clim 20:4717–4732.  https://doi.org/10.1175/JCLI4274.1 Google Scholar
  109. Sinha P, Mohanty UC, Kar SC, Dash SK, Kumari S (2013) Sensitivity of the GCM driven summer monsoon simulations to cumulus parameterization schemes in nested RegCM3. Theor Appl Climatol 112:285–306.  https://doi.org/10.1007/s00704-012-0728-5 Google Scholar
  110. Solmon F, Giorgi F, Liousse C (2006) Aerosol modeling for regional climate studies: application to anthropogenic particles and evaluation over a European/African domain. Tellus Ser B 58:51 – 72.  https://doi.org/10.1111/j.1600-0889.2005.00155.x Google Scholar
  111. Solmon F, Nair VS, Mallet M (2015) Increasing Arabian dust activity and the Indian summer monsoon. Atmos Chem Phys 15:8051–8064.  https://doi.org/10.5194/acp-15-8051-2015 Google Scholar
  112. Srinivas CV, Hariprasad D, Bhaskar Rao DV, Anjaneyulu Y, Baskaran R, Venkatraman B (2013) Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int J Climatol 33:1195–1210.  https://doi.org/10.1002/joc.3505 Google Scholar
  113. Srivastava R, Sherin SH (2017) Spatio-temporal variations of black carbon and optical properties in a regional climate model. Int J Climatol 37:1432–1443.  https://doi.org/10.1002/joc.4787 Google Scholar
  114. Srivastava R, Sherin SH (2018) Impact of dynamical and microphysical schemes on black carbon prediction in a regional climate model over India. Environ Sci Pollut Res 25:14844.  https://doi.org/10.1007/s11356-018-1607-0 Google Scholar
  115. Steiner AL, Pal JS, Giorgi F, Dickinson RE, Chameides WL (2005) The coupling of the Common Land Model (CLM0) to a regional climate model. Theor Appl Climatol 82:225–243.  https://doi.org/10.1007/s00704-005-0132-5 Google Scholar
  116. Steiner AL, Pal JS, Rausscher SA, Bell JL, Diffenbaugh NS, Boone A, Sloan LC, Giorgi F (2009) Land surface coupling in regional climate simulations of the West Africa monsoon. Clim Dyn 33:869–892.  https://doi.org/10.1007/s00382-009-0543-6 Google Scholar
  117. Stensrud D (2007) Parameterization schemes: keys to understanding numerical weather prediction models. Cambridge University Press, Cambridge, p 459Google Scholar
  118. Subba T, Gogoi MM, Pathak B, Ajay P, Bhuyan PK, Solmon F (2018) Assessment of 1D and 3D model simulated radiation flux based on surface measurements and estimation of aerosol forcing and their climatological aspects. Atmos Res 204:110–127.  https://doi.org/10.1016/j.atmosres.2018.01.012 Google Scholar
  119. Tiedtke M (1989) A comprehensive mass-flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800.  https://doi.org/10.1175/1520-0493(1989)117%3C1779:ACMFSF%3E2.0.CO;2 Google Scholar
  120. Tiwari PR, Kar SC, Mohanty UC, Dey S, Sinha P, Raju PVS, Shekhar MS (2015) The role of land surface schemes in the regional climate model (RegCM) for seasonal scale simulations over Western Himalaya. Atmósfera 28:129–142.  https://doi.org/10.1016/S0187-6236(15)30005-9 Google Scholar
  121. Tripathi SN, Dey S, Tare V, Satheesh SK, Lal S, Venkataramani S (2005) Enhanced layer of black carbon in a north Indian industrial city. Geophys Res Lett 32:L12802.  https://doi.org/10.1029/2005GL022564 Google Scholar
  122. Umakanth U, Kesarkar AP, Raju A, Rao S (2015) Representation of monsoon intraseasonal oscillations in regional climate model: sensitivity to convective physics. Clim Dyn.  https://doi.org/10.1007/s00382-015-2878-5 Google Scholar
  123. Wang Y, Zhou L, Hamilton K (2007) Effect of convective entrainment/detrainment on the simulation of the tropical precipitation diurnal cycle. Mon Weather Rev 135:567–585.  https://doi.org/10.1175/MWR3308.1 Google Scholar
  124. Wang X, Yang M, Pang G (2015) Influences of two land-surface schemes on RegCM4 precipitation simulations over the Tibetan Plateau. Adv Meteorol.  https://doi.org/10.1155/2015/106891 Google Scholar
  125. Zhu A, Ramanathan V, Li F, Kim D (2007) Dust plumes over the Pacific, Indian, and Atlantic oceans: climatology and radiative impact. J Geophys Res 112:D16208.  https://doi.org/10.1029/2007JD008427 Google Scholar
  126. Zou J, Xie Z (2012) The effects of the land-surface process parameterization of the RegCM4 on climate simulation in East Asia. Acta Meteor Sinica 70(6):1312–1326 (in Chinese)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • P. Ajay
    • 1
  • B. Pathak
    • 1
    • 2
    Email author
  • F. Solmon
    • 3
  • P. K. Bhuyan
    • 1
    • 2
  • F. Giorgi
    • 4
  1. 1.Centre for Atmospheric StudiesDibrugarh UniversityDibrugarhIndia
  2. 2.Department of PhysicsDibrugarh UniversityDibrugarhIndia
  3. 3.Laboratoir d’Aerologie, Observatoir Midi-PyreneesToulouseFrance
  4. 4.Earth System Physics SectionInternational Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations