Climate Dynamics

, Volume 53, Issue 1–2, pp 97–113 | Cite as

Spatial analysis of early-warning signals for a North Atlantic climate transition in a coupled GCM

  • Andrea Klus
  • Matthias PrangeEmail author
  • Vidya Varma
  • Michael Schulz


The climate system can potentially switch from one stable state to another. The closer a system is to a bifurcation point (i.e., ‘tipping point’), the more likely it is that even small perturbations can force the system to experience a state shift, e.g., a collapsing Atlantic meridional overturning circulation (AMOC) and associated cooling in parts of the North Atlantic. Here, we present an abrupt state transition from a warm to a cold North Atlantic climate state with expanded sea ice during an orbitally forced transient Holocene simulation performed with the Community Climate System Model version 3. The state transition is associated with a weakening of the AMOC by about 33% in this simulation. The changing background climate induced by slow external orbital forcing plays an important role for the abrupt climate shift. The model allows the identification of regions and variables that play a key role for a potential climate transition and show early-warning signals. Increase in autocorrelation and standard deviation as well as trends in skewness especially for sea-surface salinity in the northern North Atlantic are identified as robust early-warning signals, whereas no early-warning signals are found in the time series of the AMOC stream function.


Early-warning signals Climate transition North Atlantic AMOC 



We greatly appreciate the constructive comments by three anonymous reviewers, which substantially improved the presentation of our findings. This project was supported by the Deutsche Forschungsgemeinschaft (DFG) through the International Research Training Group “Processes and impacts of climate change in the North Atlantic Ocean and the Canadian Arctic” (IRTG 1904 ArcTrain) and the German climate modeling initiative PalMod. The authors would like to thank Ute Merkel for providing the restart files of the pre-industrial control run. A special thanks goes to Vasilis Dakos for making available the earlywarnings package. The CCSM3 experiments were performed with resources provided by the North-German Supercomputing Alliance (HLRN).

Supplementary material

382_2018_4567_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1898 KB)


  1. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet JT,DM, Pielke DM Jr, Pierrehumbert RA, Rhines RT, Stocker PB, Talley TF, Wallace LD, J.M (2003) Abrupt climate change. Science 299:2005–2010. CrossRefGoogle Scholar
  2. Alley RB, Marotzke J, Nordhaus WD, Overpeck JT, Peteet DM, Pielke RA Jr, Pierrehumbert RA, Rhines PB, Stocker TF, Talley LD, Wallace JM (2005) Abrupt climate change. Science. CrossRefGoogle Scholar
  3. Bathiany S, Dijkstra H, Crucifix M, Dakos V, Brovkin V, Williamson MS, Lenton M, Scheffer S (2016) Beyond bifurcation: using complex models to understand and predict abrupt climate change. Dyn Stat Clim Syst 1:1. CrossRefGoogle Scholar
  4. Bestelmeyer BT, Ellison AM, Fraser WR, Gorman KB, Holbrook SJ, Laney CM, Ohman MD, Peters DPC, Pillsbury FC, Rassweiler A, Schmitt RJ, Sharma S (2011) Analysis of abrupt transitions in ecological systems. Ecosphere 2(12):129. CrossRefGoogle Scholar
  5. Boerlijst MC, Oudman T, de Roos AM (2013) Catastrophic collapse can occur without early-warning: examples of silent catastrophes in structured ecological models. PLoS One 8(4):e62033. CrossRefGoogle Scholar
  6. Boulton CA, Allison LC, Lenton TM (2014) Early warning signals of Atlantic meridional overturning circulation collapse in a fully coupled climate model. Nat Commun. CrossRefGoogle Scholar
  7. Braconnot P, Otto-Bliesner B, Harrison S, Joussaume S, Peterchmitt J-Y, Abe-Ouchi A, Crucifix M, Driesschaert E, Fichefet Th, Hewitt CD, Kageyama M, Kitoh A, Laîné A, Loutre M-F, Marti O, Merkel U, Ramstein G, Valdes P, Weber SL, Yu Y, Zhao Y (2007) Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum–Part 1: experiments and large-scale features. Clim Past 3(2):261–277CrossRefGoogle Scholar
  8. Briegleb BP, Bitz CM, Hunke EC, Lipscomb WH, Holland MM, Schramm JL, Moritz RE (2004) Scientific description of the sea-ice component in the Community Climate System Model, Version Three. Tech., NCAR/TN-463STR, National Center for Atmospheric Research, BoulderGoogle Scholar
  9. Broecker WS, Bond G, Klas M, Bonani G, Wolfli W (1990) A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5:469–477. CrossRefGoogle Scholar
  10. Butitta VL, Carpenter SR, Loken LC, Pace ML, Stanley EH (2017) Spatial early warning signals in a lake manipulation. Ecosphere. CrossRefGoogle Scholar
  11. Clement AC, Peterson LC (2008) Mechanisms of abrupt climate change of the last glacial period. Rev Geophys 46:RG4002. CrossRefGoogle Scholar
  12. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB, Kiehl JT, Large WG, McKenna DS, Santer BD, Smith RD (2006a) The community climate system model version (CCSM3). J Clim 19:2122–2143CrossRefGoogle Scholar
  13. Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DI, Briegleb BP (2006b) The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J Clim 19:2144–2161. CrossRefGoogle Scholar
  14. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277,. CrossRefGoogle Scholar
  15. Dakos V, Scheffer M, van Nes EH, Brovkin V, Petoukhov V, Held H (2008) Slowing down as an early warning signal for abrupt climate change. Proc Nat Aca Sci 105(35):14308–14312CrossRefGoogle Scholar
  16. Dakos V, van Nes EH, Donangelo R, Fort H, Scheffer M (2010) Spatial correlation as leading indicator of catastrophic shifts. Theor Ecol 3:163–174CrossRefGoogle Scholar
  17. Dakos V, Carpenter SR, Brock WA, Ellison AM, Guttal V, Ives AR, Kéfi S, Livina V, Seekell DA, van Nes EH, Scheffer M (2012) Methods for detecting early-warnings of critical transitions in time series illustrated using simulated ecological data. PLoS One 7(7):e41010. CrossRefGoogle Scholar
  18. de Vernal A, Hillaire-Marcel C (2000) Sea-ice cover, sea surface salinity and halo-/thermocline structure of the northwest North Atlantic: modern versus full glacial conditions. Quat Sci Rev 19:65–85CrossRefGoogle Scholar
  19. Ditlevsen PD, Johnson SJ (2010) Tipping points and wishful thinking. Geophys Res Lett 37:L19703CrossRefGoogle Scholar
  20. Drake JM, Griffen BD (2010) Early-warning signals of extinction in deteriorating environments. Nature 467:456–459CrossRefGoogle Scholar
  21. Drijfhout S, van Oldenborgh GJ, Cimatoribus A (2012) Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J Clim 25:8373–8379CrossRefGoogle Scholar
  22. Drijfhout S, Gleeson E, Dijkstra HA, Livina. V (2013) Spontaneous abrupt climate change due to an atmospheric blocking–sea-ice–ocean feedback in an unforced climate model simulation. PNAS 110(49):19713–19718. CrossRefGoogle Scholar
  23. Drijfhout S, Bathiany S, Beaulieu C, Brovkin V, Claussen M, Huntingford C, Scheffer M, Sgubin G, Swingedouw D (2015) Catalogue of abrupt shifts in intergovernmental panel on climate change climate models. Proc Nat Acad Sci USA 112(43):E5777–E5786CrossRefGoogle Scholar
  24. Franzke LE, O’Kane TJ (2017) Nonlinear and stochastic climate dynamics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White, W (2010) Solar influences on climate. Rev Geophys 48:RG4001CrossRefGoogle Scholar
  26. Hall A, Stouffer RJ (2001) An abrupt climate in a coupled ocean-atmosphere simulation without external forcing. Nature 409:171–174CrossRefGoogle Scholar
  27. Halley JM, Kugiumtzis D (2011) Nonparametric testing of variability and trend in some climatic records. Clim Change 109:549–568CrossRefGoogle Scholar
  28. Hansen J, Sato M, Hearty P, Ruedy R, Kelley M, Masson-Delmotte V, Russell G, Tselioudis G, Cao J, Rignot E, Velicogna I, Tormey B, Donovan B, Kandiano E, von Schuckmann K, Pushker K, Legrande A, Bauer M, Lo K-W (2016) Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling and modern observations that 2 °C global warming could be dangerous. Atmos Chem Phys 16:3761–3812. CrossRefGoogle Scholar
  29. Hawkins E, Smith RS, Allison LC, Gregory J,M, Woolings TJ, Pohlmann H, de Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys Res Lett 38:L10605. CrossRefGoogle Scholar
  30. Held H, Kleinen T (2004) Detection of climate system bifurcations by degenerate fingerprinting. Geophys Res Lett 31:L23207CrossRefGoogle Scholar
  31. Jackson LC, Smith RS, Wood RA (2016) Ocean and atmosphere feedbacks affecting AMOC hysteresis in a GCM. Clim Dyn 49:173–191. CrossRefGoogle Scholar
  32. Jiang H, Eiriksson J, Schulz M, Knudsen K-L, Seidenkrantz MS (2005) Evidence for solar forcing of sea-surface temperature on the North Icelandic shelf during the late Holocene. Geology 33:73–76. CrossRefGoogle Scholar
  33. Jongma JI, Prange M, Renssen H, Schulz M (2007) Amplification of Holocene multicentennial climate forcing by mode transitions in North Atlantic overturning circulation. Geophys Res Lett 34:L15706. CrossRefGoogle Scholar
  34. Kleppin H, Jochum M, Otto-Bliesner B, Shields CA, Yeager S (2015) Stochastic atmospheric forcing as a cause of greenland climate transitions. J Clim 28.19:7741–7763. CrossRefGoogle Scholar
  35. Klus A, Prange M, Varma V, Tremblay LB, Schulz M (2018) Abrupt cold events in the North Atlantic in a transient Holocene simulation. Clim Past 14(8):1165–1178. CrossRefGoogle Scholar
  36. Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:RG2001. CrossRefGoogle Scholar
  37. LeBaron B (1992) Some relations between volatility and serial correlations in stock market returns. J Bus 65:199–219CrossRefGoogle Scholar
  38. Lenton TM (2011) Early-warning of climate tipping points. Nat Clim Change 1:201–209CrossRefGoogle Scholar
  39. Lenton T (2012) Future climate surprise. In: Henderson-Sellers A, McGuffie K (eds) The future of the World’s climate. Elsevier, Amsterdam. CrossRefGoogle Scholar
  40. Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf W, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793CrossRefGoogle Scholar
  41. Lenton TM, Livina VN, Dakos V, Van Nes EH, Scheffer M (2012a) Early-warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Philos Trans A Math Phys Eng Sci 370(1962):1185–1204. CrossRefGoogle Scholar
  42. Lenton TM, Livina VN, Scheffer M (2012b) Climate bifurcation during the last deglaciation? Clim Past 8:1127–1139CrossRefGoogle Scholar
  43. Lenton TM, Dakos V, Bathiany S, and Scheffer M (2017) Observed trends in the magnitude and persistence of monthly temperature variability. Nature 7:5940. CrossRefGoogle Scholar
  44. Li C, Bitz CM (2010) Can North Atlantic sea-ice anomalies account for Dansgaard–Oeschger climate signals? J Clim 23:5457–5475. CrossRefGoogle Scholar
  45. Li C, Battisti DS, Schrag DP, Tziperman E (2005) Abrupt climate shifts in Greenland due to displacements of the sea-ice edge. Geophys Res Lett. CrossRefGoogle Scholar
  46. Livina V, Lenton T (2007) A modified method for detecting incipient bifurcations in a dynamical system. Geophy Res Lett 34:1–5CrossRefGoogle Scholar
  47. Livina VN, Kwasniok F, Lenton TM (2010) Potential analysis reveals changing number of climate states during the last 60 kyr. Clim Past 6:77–82CrossRefGoogle Scholar
  48. Lohmann G, Gerdes R (1998) Sea Ice Effects on the sensitivity of the Thermohaline Circulation. J Clim 11:2789–2803CrossRefGoogle Scholar
  49. Madonna E, Li C, Grams CM, Woollings T (2017) The link between eddy-driven jet variability and weather regimes in the North Atlantic-European sector. Q J R Meteorol Soc 143:2960–2972. CrossRefGoogle Scholar
  50. Manabe S, Stouffer R (1999) Are two modes of thermohaline circulation stable? Tellus A Dyn Meteorol Oceanogr 51(3):400–411. CrossRefGoogle Scholar
  51. Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259. CrossRefGoogle Scholar
  52. Meals DW, Spooner J, Dressing SA, Harcum JB (2011) Statistical analysis for monotonic trends. U.S. Environmental Protection Agency, Tech Notes 6, pp 1–23Google Scholar
  53. Müller J, Massé G, Stein R, Belt ST (2009) Variability of sea-ice conditions in the Fram Strait over the past 30,000 years. Nat Geosci 2(11):772–776CrossRefGoogle Scholar
  54. Ortega P, Robson JI, Sutton RT, Martins A (2017) Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model. Clim Dyn 49:2625–2647CrossRefGoogle Scholar
  55. Prange M (2008) The low-resolution CCSM2 revisited: new adjustments and a present-day control run. Ocean Sci 4:151–181CrossRefGoogle Scholar
  56. Prange M, Lohmann G, Paul A (2003) Influence of vertical mixing on the thermohaline hysteresis: analyses of an OGCM. J Phys Oceanogr 33(8):1707–1721CrossRefGoogle Scholar
  57. Rahmstorf S (1995) Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378:145–149CrossRefGoogle Scholar
  58. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dyn 12:799–811. CrossRefGoogle Scholar
  59. Rahmstorf S (2002) Ocean circulation and climate during the past 120,000 years. Nature 419:207–214. CrossRefGoogle Scholar
  60. Rahmstorf S, Box JE, Feuler G, Mann ME, Robinson A, Rutherford S, Schaffernicht EJ (2015) Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat Clim Change 5:475–480CrossRefGoogle Scholar
  61. Robson J, Ortega P, Sutton R (2016) A reversal of climatic trends in the North Atlantic since 2005. Nat Geosci 9:513–517CrossRefGoogle Scholar
  62. Saba VS, Griffies SM, Anderson WG, Winton M, Alexander MA, Delworth TL, Hare JA, Harrison MJ, Rosati A, Vecchi GA, Zhang R (2016) Enhanced warming of the Northwest Atlantic Ocean under climate change. J Geophys Res Oceans 121:118–132. CrossRefGoogle Scholar
  63. Scheffer M, Hosper SH, Meijer ML, Moss B (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279CrossRefGoogle Scholar
  64. Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001) Catastrophic shifts in ecosystems. Nature 413:591–596CrossRefGoogle Scholar
  65. Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009) Early-warning signals for critical transitions. Nature. CrossRefGoogle Scholar
  66. Schulz M, Prange M, Klocker A (2007) Low-frequency oscillations of the Atlantic Ocean meridional overturning circulation in a coupled climate model. Clim Past 3:97–107CrossRefGoogle Scholar
  67. Sévellec F, Fedorov AV (2013) Millennial variability in an idealized ocean model: predicting the AMOC regime shifts. Am Meteorol Soc 27:3551–3564. CrossRefGoogle Scholar
  68. Sigl M et al (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 year. Nature 523:543–549. CrossRefGoogle Scholar
  69. Smith R, Gent P (2004) Ocean component of the Community Climate System model (CCSM2.0 and 3.0). Reference manual for the Parallel Ocean Program (POP). National Center for Atmospheric Research and LANL, Los AlamosGoogle Scholar
  70. Sommer S, van Benthem KJ, Fontaneto D, Ozgul A (2017) Are generic early-warning signals reliable indicators of population collapse in rotifers? Hydrobiologia. CrossRefGoogle Scholar
  71. Srokosz M, Baringer M, Bryden H, Cunningham S, Delworth T, Lozier S, Marotzke J, Sutton R (2012) Past, present, and future change in the Atlantic meridional overturning circulation. Am Meteorol Soc. CrossRefGoogle Scholar
  72. Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the Holocene. Geophys Res Lett 36:L19704. CrossRefGoogle Scholar
  73. Strogatz SH (1994) Nonlinear dynamics and chaos. With applications to physics, biology, chemistry and engineering. Addison-Wesley, Perseus Book Publishing, ReadingGoogle Scholar
  74. Theiler J, Eubank S, Longtin A, Galdrikian B, Farmer JD (1992) Testing for nonlinearity in time-series—the method of surrogate data. Phys D 58:77–94CrossRefGoogle Scholar
  75. Timmermann A, Gildor H, Schulz M, Tziperman E (2003) Coherent resonant millennial-scale climate oscillations triggered by massive meltwater pulses. J Clim 16:2569–2585CrossRefGoogle Scholar
  76. van Nes EH, Scheffer M (2007) Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am Nat 169:738 – 747CrossRefGoogle Scholar
  77. Varma V, Prange M, Schulz M (2016) Transient simulations of the present and the last interglacial climate using the Community Climate System Model version 3: effects of orbital acceleration. Geosci Model Dev 9:3859–3873. CrossRefGoogle Scholar
  78. Veraart AJ, Faassen EJ, Dakos V, van Nes EH, Lürling M, Scheffer M (2012) Recovery rates reflect distance to a tipping point in a living system. Nature 481:357–359. CrossRefGoogle Scholar
  79. Wanner H, Beer J, Bültikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to Late Holocene climate change: an overview. Quat Sci Rev 27(19–20):1791–1828. CrossRefGoogle Scholar
  80. Wissel C (1984) A universal law of the characteristic return time near thresholds. Oecologia 65:101–107. CrossRefGoogle Scholar
  81. Yeager SG, Shields CA, Large WG, Hack JJ (2006) The low-resolution CCSM3. J Clim 19(11):2545–2556CrossRefGoogle Scholar
  82. Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121. CrossRefGoogle Scholar
  83. Zhang X, Prange M, Merkel U, Schulz M (2014) Instability of the Atlantic overturning circulation during Marine Isotope Stage 3. Geophys Res Lett. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.MARUM-Center for Marine Environmental Sciences, Faculty of GeosciencesUniversity of BremenBremenGermany
  2. 2.National Institute of Water and Atmospheric ResearchWellingtonNew Zealand

Personalised recommendations