Advertisement

Assessing aerosol indirect effect on clouds and regional climate of East/South Asia and West Africa using NCEP GFS

  • Huilin Huang
  • Yu Gu
  • Yongkang Xue
  • Jonathan Jiang
  • Bin Zhao
Article

Abstract

Aerosols can act as cloud condensation nuclei and ice nuclei, resulting in changes in cloud droplet/particle number/size, and hence altering the radiation budget. This study investigates the interactions between aerosols and ice clouds by incorporating the latest ice clouds parameterization in an atmospheric general circulation model. The simulation shows a decrease in effective ice cloud crystal size corresponding to aerosol increase, referred to as the aerosol first indirect effect, which has not been comprehensively studied. Ice clouds with smaller particles reflect more shortwave radiation and absorb more infrared radiation, resulting in radiation change by 0.5–1.0 W/m2 at the top of the atmosphere (TOA). The TOA radiation field is also influenced by cloud cover change due to aerosol-induced circulation change. Such aerosol effects on precipitation highly depend on the existence of a deep convection system: interactions between aerosols and ice clouds create dipole precipitation anomalies in the Asian monsoon regions; while in West Africa, enhanced convections are constrained by anticyclone effects at high levels and little precipitation increase is found. We also conduct an experiment to assess interactions between aerosols and liquid clouds and compare the climatic effects with that due to ice clouds. Radiation and temperature changes generated by liquid clouds are normally 1–2 times larger than those generated by ice clouds. The radiation change has a closer relationship to liquid cloud droplet size than liquid cloud cover, in contrast with what we find for ice clouds.

Keywords

Aerosol first indirect effect AGCM East Asia West Africa GOCART data 

Notes

Acknowledgements

This work was supported by NSF Grant AGS-1419526. The authors also acknowledge the support by the Jet Propulsion Laboratory, California Institute of Technology, sponsored by NASA. Yu Gu and Bin Zhao are supported by the NSF AGS-1701526 and NASA TASNPP program (Grant 80NSSC18K0985). Yu Gu also acknowledges the support of the Natural Science Foundation of Jiangsu Province, China (No. BK20171230). The data used in this study are available by request to Huilin Huang. We thank Dr. Sarah Lu of the University at Albany, SUNY, and Dr. Zhao Chun of the University of Science and Technology of China for their assistance in obtaining the GOCART aerosol data and the AMIP CAM5 aerosol data.

References

  1. Ackerman TP, Liou KN, Valero FPJ, Pfister L (1988) Heating rates in tropical anvils. J Atmos Sci 45:1606–1623CrossRefGoogle Scholar
  2. Adler RF, Huffman GJ, Chang A, Ferraro R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeorol 4:1147–1167CrossRefGoogle Scholar
  3. Albrecht BA (1989) Aerosols, cloud microphysics and fractional cloudiness. Science 245:1227–1230CrossRefGoogle Scholar
  4. Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J Atmos Sci 31:674–701CrossRefGoogle Scholar
  5. Berry E, Mace GG (2014) Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J Geophys Res Atmos 119:9492–9508CrossRefGoogle Scholar
  6. Boucher O, Lohmann U (1995) The sulfate-ccn-cloud albedo effect: a sensitivity study with 2. General Circ. Models Tellus B 47:281–300CrossRefGoogle Scholar
  7. Campbell JR, Hlavka DL, Welton EJ, Flynn CJ, Turner DD, Spinhirne JD III, Hwang VSS IH (2002) Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: instruments and data processing. J Atmos Ocean Tech 19:431–442CrossRefGoogle Scholar
  8. Campbell JR, Lolli S, Lewis JR, Gu Y, Welton EJ (2016) daytime cirrus cloud top-of-the-atmosphere radiative forcing properties at a midlatitude site and their global consequences. J Appl Meteorol Clim 55:1667–1679CrossRefGoogle Scholar
  9. Chin M, Rood RB, Lin SJ, Muller JF, Thompson AM (2000) Atmospheric sulfur cycle simulated in the global model GOCART: model description and global properties. J Geophys Res Atmos 105:24671–24687CrossRefGoogle Scholar
  10. Chin M, Ginoux P, Kinne S, Torres O, Holben BN, Duncan BN, Martin RV, Logan JA, Higurashi A, Nakajima T (2002) Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements. J Atmos Sci 59:461–483CrossRefGoogle Scholar
  11. Chun HY, Baik JJ (1998) Momentum flux by thermally induced internal gravity waves and its approximation for large-scale models. J Atmos Sci 55:3299–3310CrossRefGoogle Scholar
  12. Clough SA, Shephard MW, Mlawer E, Delamere JS, Iacono M, Cady-Pereira K, Boukabara S, Brown PD (2005) Atmospheric radiative transfer modeling: a summary of the AER codes. J Quant Spectrosc Radiat Trans 91:233–244CrossRefGoogle Scholar
  13. Diehl K, Mitra SK (1998) A laboratory study of the effects of a kerosene-burner exhaust on ice nucleation and the evaporation rate of ice crystals. Atmos Environ 32(18):3145–3151CrossRefGoogle Scholar
  14. Feingold G, Eberhard WL, Veron DE, Previdi M (2003) First measurements of the Twomey indirect effect using ground-based remote sensors Geophys Res Lett 30Google Scholar
  15. Folkins I, Martin RV (2005) The vertical structure of tropical convection and its impact on the budgets of water vapor and ozone. J Atmos Sci 62:1560–1573CrossRefGoogle Scholar
  16. Goswami BB, Goswami BN (2017) A road map for improving dry-bias in simulating the South Asian monsoon precipitation by climate models. Clim Dyn 49:2025–2034CrossRefGoogle Scholar
  17. Gu Y, Liou KN, Jiang JH, Su H, Liu X (2012) Dust aerosol impact on North Africa climate: a GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data Atmospheric. Chem Phys 12:1667–1679Google Scholar
  18. Gu Y, Xue YK, De Sales F, Liou KN (2015) A GCM investigation of dust aerosol impact on the regional climate of North Africa and South/East. Asia Clim Dyn 46:2353–2370CrossRefGoogle Scholar
  19. Gu Y, Liou KN, Jiang JH, Fu R, Lu S, Xue YK (2017) A GCM investigation of impact of aerosols on the precipitation in Amazon during the dry to wet transition. Clim Dyn 48:2393–2404CrossRefGoogle Scholar
  20. Han QY, Rossow WB, Lacis AA (1994) Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J Clim 7:465–497CrossRefGoogle Scholar
  21. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642CrossRefGoogle Scholar
  22. Haywood J, Boucher O (2000) Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev Geophys 38:513–543CrossRefGoogle Scholar
  23. Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev 124:2322–2339CrossRefGoogle Scholar
  24. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working Group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  25. Jiang JH, Su H, Schoeberl MR, Massie ST, Colarco P, Platnick S, Livesey NJ (2008) Clean and polluted clouds: relationships among pollution, ice clouds, and precipitation in South America. Geophys Res Lett 35:L14804CrossRefGoogle Scholar
  26. Jiang JH, Su H, Massie ST, Colarco PR, Schoeberl MR, Platnick S (2009) Aerosol-CO relationship and aerosol effect on ice cloud particle size: Analyses from Aura Microwave Limb Sounder and Aqua Moderate Resolution Imaging Spectroradiometer observations. J Geophys Res Atmos 114:D20207CrossRefGoogle Scholar
  27. Jiang JH, Su H, Zhai C, Massie ST, Schoeberl MR, Colarco PR, Platnick S, Gu Y, Liou KN (2011) Influence of convection and aerosol pollution on ice cloud particle effective radius Atmospheric. Chem Phys 11:457–463Google Scholar
  28. Jiang YQ, Liu XH, Yang XQ, Wang MH (2013) A numerical study of the effect of different aerosol types on East Asian summer clouds and precipitation. Atmos Environ 70:51–63CrossRefGoogle Scholar
  29. Jiang MJ, Feng J, Li ZQ, Sun R, Hou Y-T, Zhu Y, Wan B, Guo J, Cribb M (2017) Potential influences of neglecting aerosol effects on the NCEP GFS precipitation forecast Atmospheric. Chem Phys 17:13967–13982Google Scholar
  30. Kaufman YJ, Fraser RS (1997) The effect of smoke particles on clouds and. Clim Forc Sci 277:1636–1639Google Scholar
  31. Kaufman YJ, Tanre D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419:215–223CrossRefGoogle Scholar
  32. Kessler E (1995) On the continuity and distribution of water substance in atmospheric. Circ Atmos Res 38:109–145CrossRefGoogle Scholar
  33. Kiehl JT, Briegleb BP (1993) The relative roles of sulfate aerosols and greenhouse gases in. Clim Forc Sci 260:311–314Google Scholar
  34. Kim BG, Miller MA, Schwartz SE, Liu YG, Min QL (2008) The role of adiabaticity in the aerosol first indirect effect. J Geophys Res Atmos 113:5138–5192, D05210CrossRefGoogle Scholar
  35. L’Ecuyer TS, Jiang JH (2010) Touring the atmosphere aboard the A-Train Phys Today 63:36–41CrossRefGoogle Scholar
  36. Lau KM, Kim KM (2006) Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys Res Lett 33:L21810CrossRefGoogle Scholar
  37. Lebo ZJ (2014) The sensitivity of a numerically simulated idealized squall line to the vertical distribution of aerosols. J Atmos Sci 71:187–202CrossRefGoogle Scholar
  38. Lebo ZJ, Morrison H (2014) Dynamical effects of aerosol perturbations on simulated idealized squall lines. Mon Weather Rev 142:991–1009CrossRefGoogle Scholar
  39. Lebo ZJ, Seinfeld JH (2011) Theoretical basis for convective invigoration due to increased aerosol concentration atmospheric. Chem Phys 11:5407–5429Google Scholar
  40. Li ZQ, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nature Geosci 4:888–894CrossRefGoogle Scholar
  41. Li ZQ, Lau WKM, Ramanathan V, Wu G, Ding Y, Manoj MG, Liu J, Qian Y, Li J, Zhou T, Fan J, Rosenfeld D, Ming Y, Wang Y, Huang J, Wang B, Xu X, Lee SS, Cribb M, Zhang F, Yang X, Zhao C, Takemura T, Wang K, Xia X, Yin Y, Zhang H, Guo J, Zhai PM, Sugimoto N, Babu SS, Brasseur GP (2016) Aerosol and monsoon climate interactions over. Asia Rev Geophys 54:866–929CrossRefGoogle Scholar
  42. Liu XH, Easter RC, Ghan SJ, Zaveri R, Rasch P, Shi X, Lamarque JF, Gettelman A, Morrison H, Vitt F, Conley A, Park S, Neale R, Hannay C, Ekman AML, Hess P, Mahowald N, Collins W, Iacono MJ, Bretherton CS, Flanner MG, Mitchell D (2012) Toward a minimal representation of aerosols in climate models: description and evaluation in the community atmosphere model CAM5. Geosci Model Dev 5:709–739CrossRefGoogle Scholar
  43. Lohmann U, Feichter J (2005) Global indirect aerosol effects: a review. Atmos Chem Phys 5:715–737CrossRefGoogle Scholar
  44. Lohmann U, Roeckner E (1996) Design and performance of a new cloud microphysics scheme developed for the ECHAM. general circulation model Clim Dyn 12:557–572CrossRefGoogle Scholar
  45. Lolli S, Campbell JR, Lewis JR, Gu Y, Marquis JW, Chew BN, Liew SC, Salinas SV, Welton EJ (2017) Daytime top-of-the-atmosphere cirrus cloud radiative forcing properties at singapore. J Appl Meteorol Clim 56:1249–1257CrossRefGoogle Scholar
  46. Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in. China India Sci 297:2250–2253Google Scholar
  47. Ming Y, Ramaswamy V, Ginoux PA, Horowitz LW, Russell LM (2005) Geophysical fluid dynamics laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol. J Geophys Res Atmos 110:D22206CrossRefGoogle Scholar
  48. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos 102:16663–16682CrossRefGoogle Scholar
  49. Omar AH, Winker DM, Vaughan MA, Hu Y, Trepte CR, Ferrare RA, Lee K-P, Hostetler CA, Kittaka C, Rogers RR, Kuehn RE, Liu Z (2009) The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J Atmos Ocean Tech 26:1994–2014CrossRefGoogle Scholar
  50. Pan HL, Wu WS (1994) Implementing a mass flux convective parameterization package for the NMC medium-range forecast model numerical weather prediction 10th Conference (Nwp). pp. 96–98Google Scholar
  51. Penner JE, Andreae M, Annegarn H, Barrie L, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J (2001) Aerosols, their direct and indirect effects. In: Houghton JT et al (eds) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York, pp 289–348Google Scholar
  52. Penner JE, Chen Y, Wang M, Liu X (2009) Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing. Atmos Chem Phys 9:879–896CrossRefGoogle Scholar
  53. Qian Y, Yan HP, Hou ZS, Johannesson G, Klein S, Lucas D, Neale R, Rasch P, Swiler L, Tannahill J, Wang HL, Wang MH, Zhao C (2015) Parametric sensitivity analysis of precipitation at global and local scales in the Community Atmosphere Model CAM5. J Adv Model Earth Syst 7:382–411CrossRefGoogle Scholar
  54. Pincus R, Barker HW, Morcrette JJ (2003) A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields. J Geophys Res 108:4376Google Scholar
  55. Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or drought: How do aerosols affect precipitation? Science 321:1309–1313CrossRefGoogle Scholar
  56. Rotstayn LD (1999) Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective-radius and cloud-lifetime effects. J Geophys Res-Atmos 104:9369–9380CrossRefGoogle Scholar
  57. Sassen K, Cho BS (1992) Subvisual thin cirrus lidar dataset for satellite verification and climatological research. J Appl Meteorol 31:1275–1285CrossRefGoogle Scholar
  58. Storelvmo T, Kristjansson JE, Lohmann U (2008) Aerosol influence on mixed-phase clouds in CAM-Oslo. J Atmos Sci 65:3214–3230CrossRefGoogle Scholar
  59. Sundqvist H, Berge E, Kristjansson JE (1989) Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model. Mon Weather Rev 117:1641–1657CrossRefGoogle Scholar
  60. Tao WK, Li XW, Khain A, Matsui T, Lang S, Simpson J (2007) Role of atmospheric aerosol concentration on deep convective precipitation: cloud-resolving model simulations. J Geophys Res Atmos 112:D24S18CrossRefGoogle Scholar
  61. Tao WK, Chen JP, Li ZQ, Wang C, Zhang CD (2012) Impact of Aerosols on Convective Clouds and Precipitation. Rev Geophys 50:14CrossRefGoogle Scholar
  62. Twomey S (1974) Pollution and the planetary albedo. Atmos Environ (1967) 8:1251–1256CrossRefGoogle Scholar
  63. Welton EJ, Campbell JR, Spinhirne JD, Scott VS (2001) Global monitoring of clouds and aerosols using a network of micro-pulse lidar systems Lidar Remote Sens Ind Enviro Monit 4153:151–158CrossRefGoogle Scholar
  64. Wu DL, Jiang JH, Read WG, Austin RT, Davis CP, Lambert A, Stephens GL, Vane DG, Waters JW (2008) Validation of the Aura MLS cloud ice water content measurements. J Geophys Res Atmos 113:D15S10Google Scholar
  65. Xue YK, Sellers PJ, Kinter JL, Shukla J (1991) A simplified biosphere model for global climate studies. J Clim 4:345–364CrossRefGoogle Scholar
  66. Xue YK, Juang HMH, Li WP, Prince S, DeFries R, Jiao Y, Vasic R (2004) Role of land surface processes in monsoon development: East Asia and West Africa J Geophys Res Atmos 109:D03105Google Scholar
  67. Xue YK, De Sales F, Lau WKM, Boone A, Feng JM, Dirmeyer P, Guo ZC, Kim KM, Kitoh A, Kumar V, Poccard-Leclercq I, Mahowald N, Moufouma-Okia W, Pegion P, Rowell DP, Schemm J, Schubert SD, Sealy A, Thiaw WM, Vintzileos A, Williams SF, Wu MLC (2010) Intercomparison and analyses of the climatology of the West African monsoon in the West African monsoon modeling and evaluation project (WAMME) first model intercomparison experiment. Clim Dyn 35:3–27CrossRefGoogle Scholar
  68. Xue YK, De Sales F, Lau WKM, Boone A, Kim K-M, Mechoso CR, Wang G, Kucharski F, Schiro K, Hosaka M, Li S, Druyan LM, Sanda IS, Thiaw W, Zeng N, Comer RE, Lim Y-K, Mahanama S, Song G, Gu Y, Hagos SM, Chin M, Schubert S, Dirmeyer P, Ruby Leung L, Kalnay E, Kitoh A, Lu C-H, Mahowald NM, Zhang Z (2016) West African monsoon decadal variability and surface-related forcings: second West African monsoon modeling and evaluation project experiment (WAMME II). Clim Dyn 47:3517–3545CrossRefGoogle Scholar
  69. Yun Y, Penner JE (2012) Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds J Geophys Res Atmos 117:5380–5552CrossRefGoogle Scholar
  70. Zhan XW, Xue YK, Collatz GJ (2003) An analytical approach for estimating CO2 and heat fluxes over the Amazonian region Ecol Model 162:97–117CrossRefGoogle Scholar
  71. Zhao QY, Carr FH (1997) A prognostic cloud scheme for operational NWP models. Mon Weather Rev 125:1931–1953CrossRefGoogle Scholar
  72. Zhao B, Liou KN, Gu Y, Jiang JH, Li QB, Fu R, Huang L, Liu XH, Shi XJ, Su H, He CL (2018) Impact of aerosols on ice crystal size Atmospheric. Chem Phys 18:1065–1078Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Huilin Huang
    • 1
  • Yu Gu
    • 2
    • 3
  • Yongkang Xue
    • 1
    • 2
  • Jonathan Jiang
    • 4
  • Bin Zhao
    • 2
    • 3
  1. 1.Department of GeographyUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Atmospheric and Oceanic SciencesUniversity of CaliforniaLos AngelesUSA
  3. 3.Joint Institute for Regional Earth System Science and EngineeringUniversity of CaliforniaLos AngelesUSA
  4. 4.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations