Advertisement

The North African coastal low level wind jet: a high resolution view

  • Pedro M. M. Soares
  • Daniela C. A. Lima
  • Álvaro Semedo
  • Rita M. Cardoso
  • William Cabos
  • Dmitry Sein
Article

Abstract

The North African coastal low-level jet (NACLLJ) lies over the cold Canary current and is synoptically linked to the Azores Anticyclone and to the continental thermal low over the Sahara Desert. Although being one of the most persistent and horizontally extended coastal wind jets, this is the first high resolution modelling effort to investigate the NACLLJ climate. The current study uses a ROM atmospheric hindcast simulation with ~ 25 km resolution, for the period 1980–2014. Additionally, the underlying surface wind features are also scrutinized using the CORDEX-Africa runs. These runs allow the building of a multi-model ensemble for the coastal surface flow. The ROM and the CORDEX-Africa simulations are extensively evaluated showing a good ability to represent the surface winds. The NACLLJ shows a strong seasonal cycle, but, unlike most coastal wind jets, e.g. the California one, it is significantly present all year round, with frequencies of occurrence above 20%. In spring and autumn, the maxima frequencies are around 50%, and reach values above 60% in summer. The location of maximum frequency of occurrence migrates meridionally from season to season, being in winter and spring upwind of Cap-Vert, and in summer and autumn offshore the Western Sahara. Analogously, the lowest jet wind speeds occur in winter, when the median is below 15 m/s. In summer, the jet wind speed median values are ~ 20 m/s and the maxima are above 30 m/s. The jet occurs at heights ~ 360 m. A momentum balance is pursued disclosing that the regional flow is almost geostrophic, dominated by the pressure gradient and Coriolis force. Over the jet areas the ageostrophy is responsible for the jet acceleration.

Keywords

Regional climate modelling Coastal low-level wind jet Africa CORDEX ROM (REMO-OASIS-MPIOM) Upwelling 

Notes

Acknowledgements

We thank two anonymous reviewers for their very helpful comments. Pedro M. M. Soares, Rita M. Cardoso and A. Semedo wish to acknowledge the SOLAR (PTDC/GEOMET/7078/2014) project. Daniela Lima also thanks the EarthSystems Doctoral Programme at the Faculty of Sciences of the University of Lisbon (Grant PD/BD/106008/2014), without which this work would not have been possible. These authors also acknowledge the funding by the project FCT UID/GEO/50019/2013—Instituto Dom Luiz. D. Sein’s work was supported by the PRIMAVERA project, which has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement no. 641727 and the state assignment of FASO Russia (Theme 0149-2018-0014). Finally, all authors acknowledge the German Climate Computing Center (DKRZ) where the ROM simulations were performed, and are grateful to the World Climate Research Program Working Group on Regional Climate, and the Working Group on Coupled Modelling, former coordinating body of CORDEX and responsible panel for CMIP5. The authors also thank the climate modelling groups (listed in Table 1 of this paper) for producing and making available their CORDEX-Africa model output.

Supplementary material

382_2018_4441_MOESM1_ESM.docx (793 kb)
Supplementary material 1 (DOCX 793 KB)

References

  1. Atlas R, Hoffman RN, Ardizzone J, Leidner SM, Jusem JC et al (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull Am Meteorol Soc 92:157–174.  https://doi.org/10.1175/2010BAMS2946.1 CrossRefGoogle Scholar
  2. Benazzouz A, Mordane S, Orbi A, Chagdali M, Hilmi K, Atillah A, Pelegrı JL, Demarcq H (2014a) An improved coastal upwelling index from sea surface temperature using satellite-based approach—the case of the Canary Current upwelling system. Cont Shelf Res 81:38–54CrossRefGoogle Scholar
  3. Benazzouz A, Pelegrı JL, Demarcq H, Machın F, Mason E, Orbi A, Pena-Izquierdo J, Soumia M (2014b) On the temporal memory of coastal upwelling off NW Africa. J Geophys Res Oceans 119:6356–6380.  https://doi.org/10.1002/2013JC009559 CrossRefGoogle Scholar
  4. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2009) Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim Dyn 32(7–8):1097–1106.  https://doi.org/10.1007/s00382-008-0446-y CrossRefGoogle Scholar
  5. Bosilovich MG et al (2015) MERRA-2: initial evaluation of the climate. Technical Report Series on Global Modeling and Data Assimilation. 43. NASA/TM-2015-104606/Vol. 43Google Scholar
  6. Burk SD, Thompson WT (1996) The summertime low-level jet and marine boundary layer structure along the California coast. Monthly Weather Rev 124(4):668–686CrossRefGoogle Scholar
  7. Cardoso RM, Soares PMM, Lima DCA, Semedo A (2016) The impact of climate change on the Iberian low-level wind jet: EURO-CORDEX regional climate simulation. Tellus A 68:29005.  https://doi.org/10.3402/tellusa.v68.29005 CrossRefGoogle Scholar
  8. Cardoso RM, Soares PMM, Lima DCA, Miranda PMA (2018) Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim Dyn.  https://doi.org/10.1007/s00382-018-4124-4 CrossRefGoogle Scholar
  9. Chao S (1985) Coastal jets in the lower atmosphere. J Phys Oceanogr 15:361–371CrossRefGoogle Scholar
  10. Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A (2007) The HIRHAM regional climate model version 5 (beta). Technical Report 06-17, pp 1–22Google Scholar
  11. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  12. Ferro CAT, Hannachi A, Stephenson DB (2005) Simple nonparametric techniques for exploring changing probability distributions of weather. J Clim 18(21):4344–4354CrossRefGoogle Scholar
  13. Findlater J (1969) A major low-level air current near the Indian Ocean during the northern summer. Q J R Meteorol Soc 95(404):362–380CrossRefGoogle Scholar
  14. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183Google Scholar
  15. Gómez-Gesteira M, De Castro M, Álvarez I, Lorenzo MN, Gesteira JLG, Crespo AJC (2008) Spatio-temporal upwelling trends along the Canary upwelling system (1967–2006). Ann N Y Acad Sci.  https://doi.org/10.1196/annals.1446.004 CrossRefGoogle Scholar
  16. Hewitson B, Lennard C, Nikulin G, Jones C (2012) CORDEX-Africa: a unique opportunity for science and capacity building. CLIVAR Exchanges 60, International CLIVAR Project Office, Southampton, pp 6–7Google Scholar
  17. Jacob D et al (2001) A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period. Meteorol Atmos Phys 77:19–43.  https://doi.org/10.1007/s007030170015 CrossRefGoogle Scholar
  18. Kobayashi S et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48CrossRefGoogle Scholar
  19. Li M, Liu J, Wang Z, Wang H, Zhang Z, Zhang L, Yang Q (2013) Assessment of sea surface wind from NWP reanalyses and satellites in the Southern Ocean. J Atmos Oceanic Technol 30:1842–1853.  https://doi.org/10.1175/JTECH-D-12-00240.1 CrossRefGoogle Scholar
  20. Lima DCS, Soares PMM, Semedo A, Cardoso RM (2018) A global view of coastal low-level wind jets using an ensemble of reanalysis. J Clim 31(4):1525–1546.  https://doi.org/10.1175/JCLI-D-17-0395.1 CrossRefGoogle Scholar
  21. Martynov A, Laprise R, Sushama L, Winger K, Separovic L, Dugas B (2013) Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: model performance evaluation. Clim Dyn 41:2973–3005.  https://doi.org/10.1007/s00382-013-1778-9 CrossRefGoogle Scholar
  22. Muñoz RC, Garreaud R (2005) Dynamics of the low-level jet off the west coast of subtropical South America. Monthly Weather Rev 133(12):3661–3677.  https://doi.org/10.1175/MWR3074.1 CrossRefGoogle Scholar
  23. Nikulin G, Jones C, Samuelsson P, Giorgi F, Sylla MB, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Ha¨nsler A, van Meijgaard E, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim.  https://doi.org/10.1174/JCLI-D-11-00375.1 CrossRefGoogle Scholar
  24. Nogueira M, Soares PMM, Tomé R, Cardoso RM (2018) High-resolution multi-model projections of onshore wind resources over Portugal under a changing climate. Theor Appl Climatol.  https://doi.org/10.1007/s00704-018-2495-4 CrossRefGoogle Scholar
  25. Parish TR (2000) Forcing of the summertime low-level jet along the California Coast. J Appl Meteorol 39(12):2421–2433.  https://doi.org/10.1175/1520-0450(2000)039<2421:FOTSLL>2.0.CO;2 CrossRefGoogle Scholar
  26. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376CrossRefGoogle Scholar
  27. Ranjha R, Svensson G, Tjernström M, Semedo A (2013) Global distribution and seasonal variability of coastal low-level jets derived from ERA-Interim reanalysis. Tellus A 65:20412.  https://doi.org/10.3402/tellusa.v65i0.20412 CrossRefGoogle Scholar
  28. Ranjha R, Tjernström M, Semedo A, Svensson G (2015) Structure and variability of the Oman coastal low-level jet. Tellus A 67:25285.  https://doi.org/10.3402/tellusa.v67.25285 CrossRefGoogle Scholar
  29. Ranjha R, Tjernström M, Svensson G, Semedo A (2016) Modeling coastal low-level wind-jets: does horizontal resolution matter? Meteorol Atmos Phys 128:263–278.  https://doi.org/10.1007/s00703-015-0413-1 CrossRefGoogle Scholar
  30. Rijo N, Lima DCA, Semedo A, Miranda PMA, Cardoso RM, Soares PMM (2017) Spatial and temporal variability of the Iberian Peninsula coastal low-level jet. Int J Climatol 38(4):1605–1622.  https://doi.org/10.1002/joc.5303 CrossRefGoogle Scholar
  31. Rockel B, Will A, Hense A (2008) The regional climate model COSMO-CLM (CCLM). Meteorologische Zeitschrift 17:347–348CrossRefGoogle Scholar
  32. Saha S et al (2010) The NCEP climate forecast system reanalysis. Am Meteorol Soc 91:1015–1057CrossRefGoogle Scholar
  33. Samuelsson P et al (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus Ser A Dyn Meteorol Oceanogr 63:4–23.  https://doi.org/10.1111/j.1600-0870.2010.00478.x CrossRefGoogle Scholar
  34. Sein DV, Mikolajewicz U, Groger M, Fast I, Cabos W, Pinto JG, Hagemann S, Semmler T, Izquierdo A, Jacob D (2015) Regionally coupled atmosphere-ocean-sea ice-marine biogeochemistry model ROM: 1. Description and validation. J Adv Model Earth Syst 7:268–304.  https://doi.org/10.1002/2014MS000357 CrossRefGoogle Scholar
  35. Semedo A, Soares PMM, Lima DCA, Cardoso RM, Bernardino M, Miranda PMA (2016) The impact of climate change on the global coastal low-level wind jets: EC-EARTH simulations. Glob Planet Change 137:88–106CrossRefGoogle Scholar
  36. Soares PMM, Cardoso RM, Miranda PMA, Medeiros J, De Belo-Pereira M and co-authors (2012) WRF high resolution dynamical downscaling of ERA-Interim for Portugal. Clim Dyn 39:24972522.  https://doi.org/10.1007/s00382-012-1315-2 CrossRefGoogle Scholar
  37. Soares PMM, Cardoso RM, Semedo A, Chinita MJ, Ranjha R (2014) Climatology of Iberia coastal low-level wind jet: WRF high resolution results. Tellus A 66:22377.  https://doi.org/10.3402/tellusa.v66.22377 CrossRefGoogle Scholar
  38. Soares PMM, Cardoso RM, Ferreira JJ, Miranda PMA (2015) Climate change and the Portuguese precipitation: ENSEMBLES regional climate model results. Clim Dyn 45(7):1771–1787.  https://doi.org/10.1007/s00382-014-2432-x CrossRefGoogle Scholar
  39. Soares PMM, Lima DCA, Cardoso RM, Semedo A (2017a) High resolution projections for the western Iberian coastal low level jet in a changing climate. Clim Dyn.  https://doi.org/10.1007/s00382-016-3397-8 CrossRefGoogle Scholar
  40. Soares PMM, Cardoso RM, Lima DCA, Miranda PMA (2017b) Future precipitation in Portugal: high-resolution projections using WRF model and EURO-CORDEX multi-model ensembles. Clim Dyn 49:2503–2530.  https://doi.org/10.1007/s00382-016-3455-2 CrossRefGoogle Scholar
  41. Soares PMM, Lima DCA, Cardoso RM, Nascimento M, Semedo A (2017c) Western Iberian offshore wind resources: more or less in a global warming climate? Appl Energy 203:72–90.  https://doi.org/10.1016/j.apenergy.2017.06.004 CrossRefGoogle Scholar
  42. Tang WQ, Liu WT, Stiles BW (2004) Evaluations of high resolution ocean surface vector winds measured by QuikSCAT scatterometer in coastal regions. IEEE Trans Geosci Remote Sens 42:17621769Google Scholar
  43. Tjernström M, Grisogono B (2000) Simulations of supercritical flow around points and capes in the coastal atmosphere. J Atmos Sci 52:863–878CrossRefGoogle Scholar
  44. van Meijgaard E, Van Ulft LH, Van De Berg WJ, Bosveld FC, Van Den Hurk BJJM, Lenderink G, Siebesma AP (2008) The KNMI regional atmospheric climate model RACMO version 2.1. Koninklijk Nederlands Meteorologisch Instituut, 43Google Scholar
  45. Willmott CJ, Robeson SM, Matsuura K (2012) A refined index of model performance. Int J Climatol 32:2088–2094CrossRefGoogle Scholar
  46. Winant CD, Dorman CE, Friehe CA, Beardsley RC (1988) The marine layer off northern California: an example of supercritical channel flow. J Atmos Sci 45:3588–3605CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pedro M. M. Soares
    • 1
  • Daniela C. A. Lima
    • 1
  • Álvaro Semedo
    • 2
  • Rita M. Cardoso
    • 1
  • William Cabos
    • 3
  • Dmitry Sein
    • 4
    • 5
  1. 1.Instituto Dom Luiz (IDL), Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  2. 2.Department of Water Science and EngineeringIHE DelftDelftThe Netherlands
  3. 3.Department of PhysicsUniversity of AlcaláAlcalá de HenaresSpain
  4. 4.Alfred Wegener Institute for Polar and Marine ResearchBremerhavenGermany
  5. 5.Shirshov Institute of OceanologyRussian Academy of ScienceMoscowRussia

Personalised recommendations