Advertisement

Climate Dynamics

, Volume 52, Issue 5–6, pp 3183–3201 | Cite as

Remote and local influences in forecasting Pacific SST: a linear inverse model and a multimodel ensemble study

  • Daniela Faggiani DiasEmail author
  • Aneesh Subramanian
  • Laure Zanna
  • Arthur J. Miller
Article
  • 165 Downloads

Abstract

A suite of statistical linear inverse models (LIMs) are used to understand the remote and local SST variability that influences SST predictions over the North Pacific region. Observed monthly SST anomalies in the Pacific are used to construct different regional LIMs for seasonal to decadal predictions. The seasonal forecast skills of the LIMs are compared to that from three operational forecast systems in the North American Multi-Model Ensemble (NMME), revealing that the LIM has better skill in the Northeastern Pacific than NMME models. The LIM is also found to have comparable forecast skill for SST in the Tropical Pacific with NMME models. This skill, however, is highly dependent on the initialization month, with forecasts initialized during the summer having better skill than those initialized during the winter. The data are also bandpass filtered into seasonal, interannual and decadal time scales to identify the relationships between time scales using the structure of the propagator matrix. Moreover, we investigate the influence of the tropics and extra-tropics in the predictability of the SST over the region. The Extratropical North Pacific seems to be a source of predictability for the tropics on seasonal to interannual time scales, while the tropics enhance the forecast skill for the decadal component. These results indicate the importance of temporal scale interactions in improving the predictions on decadal timescales. Hence, we show that LIMs are not only useful as benchmarks for estimates of statistical skill, but also to isolate contributions to the forecast skills from different timescales, spatial scales or even model components.

Keywords

Linear inverse model Predictability Sea surface temperature Timescale interactions NMME 

Notes

Acknowledgements

We are grateful for the National Science Foundation (OCE1419306) and the National Oceanic and Atmospheric Administration (NOAA-MAPP; NA17OAR4310106) for funding that supported this research. Daniela F. Dias was partially supported by the Brazilian National Council for Scientific and Technological Development (CNPq) under the Grant 221222/2014-6. We also thank an anonymous reviewer for the comments and sugestions.

References

  1. Alexander MA, Bladé I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air–sea interaction over the global oceans. J Clim 15(16):2205–2231.  https://doi.org/10.1175/1520-0442 CrossRefGoogle Scholar
  2. Alexander MA, Mastrova L, Penland C, Scott JD, Chang P (2008) Forecasting Pacific SSTs: linear inverse model predictions of the PDO. J Clim 21(2):385–402.  https://doi.org/10.1175/2007JCLI1849.1 CrossRefGoogle Scholar
  3. Alexander MA, Vimont DJ, Chang P, Scott JD (2010) The impact of extratropical atmospheric variability on ENSO: testing the seasonal footprinting mechanism using coupled model experiments. J Clim 23(11):2885–2901.  https://doi.org/10.1175/2010JCLI3205.1 CrossRefGoogle Scholar
  4. Allen JT, Tippett MK, Sobel AH (2015) Influence of the El Niño/Southern oscillation on tornado and hail frequency in the United States. Nat Geosci 8(4):278–283.  https://doi.org/10.1038/ngeo2385 CrossRefGoogle Scholar
  5. Barnston AG, Ropelewski CF (1992) Prediction of ENSO episodes using canonical correlation analysis. J Clim.  https://doi.org/10.1175/1520-0442 Google Scholar
  6. Barnston AG, Tippett MK, Ranganathan M, L ’heureux ML, (2017) Deterministic skill of ENSO predictions from the North American multimodel ensemble. Clim Dyn.  https://doi.org/10.1007/s00382-017-3603-3 Google Scholar
  7. Battisti DS, Hirst AC (1989) Interannual variability in a tropical atmosphere ocean model: influence of the basic state. Ocean Geometry Nonlinearity.  https://doi.org/10.1175/1520-0469 Google Scholar
  8. Becker E, Van den Dool H, Zhang Q (2014) Predictability and forecast skill in NMME. J Clim 27(15):5891–5906.  https://doi.org/10.1175/JCLI-D-13-00597.1 CrossRefGoogle Scholar
  9. Becker E, Van den Dool H, Zhang Q (2016) Probabilistic seasonal forecasts in the North American Multimodel Ensemble: a baseline skill assessment. J Clim 29(8):3015–3026.  https://doi.org/10.1175/JCLI-D-14-00862.1 CrossRefGoogle Scholar
  10. Bjerknes J (1966) A possible response of the atmospheric Hadley circulation to equatorial anomalies of ocean temperature. Tellus 18(4):820–829.  https://doi.org/10.1111/j.2153-3490.1966.tb00303.x CrossRefGoogle Scholar
  11. Capotondi A (2013) ENSO diversity in the NCAR CCSM4 climate model. J Geophys Res Oceans 118(10):4755–4770.  https://doi.org/10.1002/jgrc.20335 CrossRefGoogle Scholar
  12. Capotondi A, Sardeshmukh PD (2015) Optimal precursors of different types of ENSO events. Geophys Res Lett 42(22):9952–9960.  https://doi.org/10.1002/2015GL066171 CrossRefGoogle Scholar
  13. Cavanaugh NR, Allen T, Subramanian A, Mapes B, Seo H, Miller AJ (2014) The skill of atmospheric linear inverse models in hindcasting the Madden–Julian Oscillation. Clim Dyn 44(3–4):897–906.  https://doi.org/10.1007/s00382-014-2181-x Google Scholar
  14. Ceballos LI, Di Lorenzo E, Hoyos CD, Schneider N, Taguchi B (2009) North Pacific gyre oscillation synchronizes climate fluctuations in the eastern and western boundary systems. J Clim 22(19):5163–5174.  https://doi.org/10.1175/2009JCLI2848.1 CrossRefGoogle Scholar
  15. Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño-Southern oscillation. Geophys Res Lett.  https://doi.org/10.1029/2007GL030302 Google Scholar
  16. Chen N, Majda AJ (2016) Simple dynamical models capturing the key features of the Central Pacific El Niño. Proc Natl Acad Sci 113(42):11,732–11,737.  https://doi.org/10.1073/pnas.1614533113 CrossRefGoogle Scholar
  17. Chen C, Cane MA, Henderson N, Lee DE, Chapman D, Kondrashov D, Chekroun MD (2016) Diversity, nonlinearity, seasonality, and memory effect in ENSO simulation and prediction using empirical model reduction. J Clim 29(5):1809–1830.  https://doi.org/10.1175/JCLI-D-15-0372.1 CrossRefGoogle Scholar
  18. Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere–ocean variability *. J Clim 17(21):4143–4158CrossRefGoogle Scholar
  19. Clayson CA, Weitlich D (2007) Variability of tropical diurnal sea surface temperature. J Clim 20(2):334–352.  https://doi.org/10.1175/JCLI3999.1 CrossRefGoogle Scholar
  20. Di Lorenzo E, Schneider N, Cobb KM, Franks PJS, Chhak K, Miller AJ, McWilliams JC, Bograd SJ, Arango H, Curchitser E, Powell TM, Rivière P (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett.  https://doi.org/10.1029/2007GL032838 Google Scholar
  21. Di Lorenzo E, Liguori G, Schneider N, Furtado JC, Anderson BT, Alexander MA (2015) ENSO and meridional modes: a null hypothesis for Pacific climate variability. Geophys Res Lett 42(21):9440–9448.  https://doi.org/10.1002/2015GL066281 CrossRefGoogle Scholar
  22. Duan W, Wei C (2013) The ’spring predictability barrier’ for ENSO predictions and its possible mechanism: results from a fully coupled model. Int J Climatol 33(5):1280–1292.  https://doi.org/10.1002/joc.3513 CrossRefGoogle Scholar
  23. Eccles F, Tziperman E (2004) Nonlinear effects on ENSO’s period. J Atmos Sci 61(4):474–482.  https://doi.org/10.1175/1520-0469 CrossRefGoogle Scholar
  24. Frankignoul C, Hasselmann K (1977) Stochastic climate models, part II application to sea-surface temperature anomalies and thermocline variability. Tellus 29(4):289–305.  https://doi.org/10.3402/tellusa.v29i4.11362 CrossRefGoogle Scholar
  25. Grimm AM, Tedeschi RG (2009) ENSO and extreme rainfall events in South America. J Clim 22(7):1589–1609.  https://doi.org/10.1175/2008JCLI2429.1 CrossRefGoogle Scholar
  26. Henley BJ, Gergis J, Karoly DJ, Power S, Kennedy J, Folland CK (2015) A Tripole index for the interdecadal Pacific Oscillation. Clim Dyn 45(11–12):3077–3090.  https://doi.org/10.1007/s00382-015-2525-1 CrossRefGoogle Scholar
  27. Hervieux G, Alexander MA, Stock CA, Jacox MG, Pegion K, Becker E, Castruccio F, Tommasi D (2017) More reliable coastal SST forecasts from the North American multimodel ensemble. Clim Dyn.  https://doi.org/10.1007/s00382-017-3652-7 Google Scholar
  28. Huddart B, Subramanian A, Zanna L, Palmer T (2016) Seasonal and decadal forecasts of Atlantic Sea surface temperatures using a linear inverse model. Clim Dyn.  https://doi.org/10.1007/s00382-016-3375-1 Google Scholar
  29. Jacox MG, Alexander MA, Stock CA, Hervieux G (2017) On the skill of seasonal sea surface temperature forecasts in the California Current System and its connection to ENSO variability. Clim Dyn.  https://doi.org/10.1007/s00382-017-3608 Google Scholar
  30. Jin EK, Kinter JL III, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere models. Clim Dyn 31:647–664.  https://doi.org/10.1007/s00382-008-0397-3 CrossRefGoogle Scholar
  31. Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22(3):615–632.  https://doi.org/10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  32. Kirtman BP, Min D, Infanti JM, Kinter JL, Paolino DA, Zhang Q, Van Den Dool H, Saha S, Mendez MP, Becker E, Peng P, Tripp P, Huang J, Dewitt DG, Tippett MK, Barnston AG, Li S, Rosati A, Schubert SD, Rienecker M, Suarez M, Li ZE, Marshak J, Lim YK, Tribbia J, Pegion K, Merryfield WJ, Denis B, Wood EF (2014) The North American multimodel ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95(4):585–601.  https://doi.org/10.1175/BAMS-D-12-00050.1 CrossRefGoogle Scholar
  33. L’Heureux ML, Tippett MK, Barnston AG (2015) Characterizing ENSO coupled variability and its impact on North American seasonal precipitation and temperature. J Clim 28(10):4231–4245.  https://doi.org/10.1175/JCLI-D-14-00508.1 CrossRefGoogle Scholar
  34. Linkin ME, Nigam S (2008) The North Pacific Oscillation–West Pacific teleconnection pattern: mature-phase structure and winter impacts. J Clim 21(9):1979–1997.  https://doi.org/10.1175/2007JCLI2048.1 CrossRefGoogle Scholar
  35. Lopez H, Kirtman BP (2014) WWBs, ENSO predictability, the spring barrier and extreme events. J Geophys Res.  https://doi.org/10.1002/2014JD021908 Google Scholar
  36. Ma Alexander, Deser C (1995) A mechanism for the recurrence of wintertime midlatitude SST anomalies. J Phys Oceanogr 25:122–137.  https://doi.org/10.1175/1520-0485 CrossRefGoogle Scholar
  37. MacMynowski DG, Tziperman E (2008) Factors affecting ENSO’s period. J Atmos Sci 65(5):1570–1586.  https://doi.org/10.1175/2007JAS2520.1 CrossRefGoogle Scholar
  38. Majda aJ, Timofeyev I, Vanden Eijnden E (1999) Models for stochastic climate prediction. Proc Natl Acad Sci USA 96(26):14,687–91.  https://doi.org/10.1073/pnas.96.26.14687 CrossRefGoogle Scholar
  39. Majda AJ, Franzke C, Crommelin D (2009) Normal forms for reduced stochastic climate models. Proc Natl Acad Sci 106(10):3649–3653CrossRefGoogle Scholar
  40. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis R (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol.  https://doi.org/10.1175/1520-0477 Google Scholar
  41. McEwen GF (1914) Peculiarities of the California climate. Mon Weather Rev 42:14–25.  https://doi.org/10.1175/1520-0493 CrossRefGoogle Scholar
  42. McPhaden MJ (2003) Tropical Pacific ocean heat content variations and ENSO persistence barriers. Geophys Res Lett 30(9):1480.  https://doi.org/10.1029/2003GL016872 CrossRefGoogle Scholar
  43. Meehl GA, Goddard L, Boer G, Burgman R, Branstator G, Cassou C, Corti S, Danabasoglu G, Doblas-Reyes F, Hawkins E, Karspeck A, Kimoto M, Kumar A, Matei D, Mignot J, Msadek R, Navarra A, Pohlmann H, Rienecker M, Rosati T, Schneider E, Smith D, Sutton R, Teng H, Van Oldenborgh GJ, Vecchi G, Yeager S (2014) Decadal climate prediction an update from the trenches. Bull Am Meteorol Soc 95(2):243–267.  https://doi.org/10.1175/BAMS-D-12-00241.1 CrossRefGoogle Scholar
  44. Miller AJ, Schneider N (2000) Interdecadal climate regime dynamics in the North Pacific Ocean: theories, observations and ecosystem impacts. Prog Oceanogr 47(2–4):355–379.  https://doi.org/10.1016/S0079-6611(00)00044-6 CrossRefGoogle Scholar
  45. Newman M (2007) Interannual to decadal predictability of tropical and North Pacific sea surface temperatures. J Clim 20(11):2333–2356.  https://doi.org/10.1175/JCLI4165.1 CrossRefGoogle Scholar
  46. Newman M (2013) An empirical benchmark for decadal forecasts of global surface temperature anomalies. J Clim 26(14):5260–5269.  https://doi.org/10.1175/JCLI-D-12-00590.1 CrossRefGoogle Scholar
  47. Newman M, Sardeshmukh PD (2017) Are we near the predictability limit of tropical Indo-Pacific sea surface temperatures? Geophys Res Lett.  https://doi.org/10.1002/2017GL074088 Google Scholar
  48. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16(23):3853–3857.  https://doi.org/10.1175/1520-0442 CrossRefGoogle Scholar
  49. Newman M, Sardeshmukh PD, Penland C (2009) How important is air–sea coupling in ENSO and MJO evolution? J Clim 22(11):2958–2977.  https://doi.org/10.1175/2008JCLI2659.1 CrossRefGoogle Scholar
  50. Newman M, Alexander MA, Scott JD (2011) An empirical model of tropical ocean dynamics. Clim Dyn 37(9–10):1823–1841.  https://doi.org/10.1007/s00382-011-1034-0 CrossRefGoogle Scholar
  51. Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N, Vimont DJ, Phillips AS, Scott JD, Smith CA (2016) The Pacific decadal oscillation, revisited. J Clim 29(12):4399–4427.  https://doi.org/10.1175/JCLI-D-15-0508.1 CrossRefGoogle Scholar
  52. Penland C (1989) Random forcing and forecasting using principal oscillation pattern analysis. Mon Weather Rev.  https://doi.org/10.1175/1520-0493 Google Scholar
  53. Penland C, Magorian T (1993) Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J Clim.  https://doi.org/10.1175/1520-0442 Google Scholar
  54. Penland C, Matrosova L (1994) A balance condition for stochastic numerical models with application to the El Niño-Southern oscillation. J Clim.  https://doi.org/10.1175/1520-0442 Google Scholar
  55. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim.  https://doi.org/10.1175/1520-0442 Google Scholar
  56. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15(5):319–324.  https://doi.org/10.1007/s003820050284 CrossRefGoogle Scholar
  57. Qiu B (2003) Kuroshio extension variability and forcing of the Pacific decadal oscillations: responses and potential feedback. J Phys Oceanogr 33(12):2465–2482.  https://doi.org/10.1175/2459.1 CrossRefGoogle Scholar
  58. Rayner NA, Parker D, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407.  https://doi.org/10.1029/2002JD002670 CrossRefGoogle Scholar
  59. Schneider N, Cornuelle BD (2005) The forcing of the Pacific Decadal oscillation. J Clim 18(21):4355–4373.  https://doi.org/10.1175/JCLI3527.1 CrossRefGoogle Scholar
  60. Taguchi B, Xie SP, Schneider N, Nonaka M, Sasaki H, Sasai Y (2007) Decadal variability of the Kuroshio extension: observations and an eddy-resolving model hindcast. J Clim 20(11):2357–2377.  https://doi.org/10.1175/JCLI4142.1 CrossRefGoogle Scholar
  61. Tanahashi S, Kawamura H, Takahashi T, Yusa H (2003) Diurnal variations of sea surface temperature over the wide-ranging ocean using VISSR on board GMS. J Geophys Res 108(C7):1–15.  https://doi.org/10.1029/2002JC001313 CrossRefGoogle Scholar
  62. Thomas EE, Vimont DJ (2016) Modeling the mechanisms of linear and nonlinear ENSO responses to the pacific meridional mode. J Clim 29(24):8745–8761.  https://doi.org/10.1175/JCLI-D-16-0090.1 CrossRefGoogle Scholar
  63. Vimont DJ, Battisti DS, Hirst AC (2001) Footprinting: a seasonal connection between the tropics and mid-latitudes. Geophys Res Lett 28(20):3923–3926.  https://doi.org/10.1029/2001GL013435 CrossRefGoogle Scholar
  64. Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16(16):2668–2675.  https://doi.org/10.1175/1520-0442 CrossRefGoogle Scholar
  65. Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J Clim 22(3):518–534.  https://doi.org/10.1175/2008JCLI2220.1 CrossRefGoogle Scholar
  66. Vimont DJ, Alexander MA, Newman M (2014) Optimal growth of Central and East Pacific ENSO events. Geophys Res Lett 41:4027–4034.  https://doi.org/10.1002/2014GL059997 CrossRefGoogle Scholar
  67. Webster PJ, Yang S (1992) Monsoon and ENSO: selectively interactive systems. Q J R Meteorol Soc 118(507):877–926CrossRefGoogle Scholar
  68. Xue Y, Chen M, Kumar A, Hu ZZ, Wang W (2013) Prediction skill and bias of tropical pacific sea surface temperatures in the NCEP climate forecast system version 2. J Clim 26(15):5358–5378.  https://doi.org/10.1175/JCLI-D-12-00600.1 CrossRefGoogle Scholar
  69. Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38(2):2–6.  https://doi.org/10.1029/2010GL045886 CrossRefGoogle Scholar
  70. Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24(3):708–720.  https://doi.org/10.1175/2010JCLI3688.1 CrossRefGoogle Scholar
  71. Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the Central Equatorial Pacific. J Clim 23(11):2869–2884.  https://doi.org/10.1175/2010JCLI3171.1 CrossRefGoogle Scholar
  72. Zanna L (2012) Forecast skill and predictability of observed atlantic sea surface temperatures. J Clim 25(14):5047–5056.  https://doi.org/10.1175/JCLI-D-11-00539.1 CrossRefGoogle Scholar
  73. Zhang YJ, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10(5):1004–1020.  https://doi.org/10.1175/1520-0442 CrossRefGoogle Scholar
  74. Zhao M, Hendon HH, Alves O, Liu G, Wang G (2016) Weakened Eastern Pacific El Niño predictability in the early twenty-first century. J Clim 29(18):6805–6822.  https://doi.org/10.1175/JCLI-D-15-0876.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scripps Institution of OceanographyLa JollaUSA
  2. 2.University of OxfordOxfordUK

Personalised recommendations