Skip to main content

Advertisement

Log in

Risk and dynamics of unprecedented hot months in South East China

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The Yangtze region of South East China has experienced several extreme hot summer months in recent years. Such events can have devastating socio–economic impacts. We use a large ensemble of initialised climate simulations to assess the current chance of unprecedented hot summer months in the Yangtze River region. We find a 10% chance of an unprecedented hot summer month each year. Our simulations suggest that monthly mean temperatures up to 3 °C hotter than the current record are possible. The dynamics of these unprecedented extremes highlights the occurrence of a stationary atmospheric wave, the Silk Road Pattern, in a significant number of extreme hot events. We present evidence that this atmospheric wave is driven by variability in the Indian summer monsoon. Other extreme events are associated with a westward shift in the western North Pacific subtropical high. The most extreme simulated events exhibit combined characteristics of both the Silk Road Pattern and the shifted western North Pacific subtropical high.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ambrizzi T, Hoskins BJ, Hsu HH (1995) Rossby wave propagation and teleconnection patterns in the austral winter. J Atmos Sci 52(21):3661–3672

    Article  Google Scholar 

  • Chen G, Huang R (2012) Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China. J Clim 25(22):7834–7851

    Article  Google Scholar 

  • Chen X, Zhou T (2017) Relative contributions of external SST forcing and internal atmospheric variability to July–August heat waves over the Yangtze River valley. Clim Dyn. https://doi.org/10.1007/s00382-017-3871-y

    Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimiliation system. QJR Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Ding T, Ke Z (2015) Characteristics and changes of regional wet and dry heat wave events in China during 1960–2013. Theoret Appl Climatol 122(3–4):651–665

    Article  Google Scholar 

  • Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18(17):3483–3505

    Article  Google Scholar 

  • Dunstone N et al (2016) Skilful predictions of the winter North Atlantic Oscillation one year ahead. Nat GeoSci 9:809–814

    Article  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modelling, and impacts. Science 289(5487):2068–2074

    Article  Google Scholar 

  • Enomoto T, Hoskins BJ, Matsuda Y (2003) The formation mechanism of the Bonin high in August. Quart J R Meteorol Soc 129(587):157–178

    Article  Google Scholar 

  • Feng J, Chen W, Tam CY, Zhou W (2011) Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases. Int J Climatol 31(14):2091–2101

    Article  Google Scholar 

  • Field CB, Barros VR (eds) (2014) Climate change 2014: impacts, adaptation, and vulnerability, vol 1. Cambridge University Press, Cambridge and New York

    Google Scholar 

  • Gong DY, Pan YZ, Wang JA (2004) Changes in extreme daily mean temperatures in summer in eastern China during 1955–2000. Theoret Appl Climatol 77(1):25–37

    Google Scholar 

  • Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys Res Lett 30:1544

    Article  Google Scholar 

  • Harris IP, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34:623–642

    Article  Google Scholar 

  • He J, Bing Z, Min W, Feng L (2001) Vertical circulation structure, interannual variation features and variation mechanism of western Pacific subtropical high. Adv Atmos Sci 18(4):497–510

    Article  Google Scholar 

  • Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196

    Article  Google Scholar 

  • Hu K et al (2012) The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer. Adv Atmos Sci 29:91–100

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland

  • Jin D, Guan Z (2017) Summer rainfall seesaw between Hetao and the middle and lower reaches of the Yangtze River and its relationship with the North Atlantic Oscillation. J Clim 30(17):6629–6643

    Article  Google Scholar 

  • Joseph PV, Srinivasan J (1999) Rossby waves in May and the Indian summer monsoon rainfall. Tellus A 51(5):854–864

    Article  Google Scholar 

  • Kent C, Pope E, Thompson V, Lewis K, Scaife AA, Dunstone N (2017) Using climate model simulations to assess the current climate risk to maize production. Environ Res Lett 12(5):054012

    Article  Google Scholar 

  • Kornhuber K, Petoukhov V, Karoly D, Petri S, Rahmstorf S, Coumou D (2017) Summertime planetary wave resonance in the Northern and Southern hemispheres. J Clim 30(16):6133–6150

    Article  Google Scholar 

  • Kosaka Y, Nakamura H, Watanabe M, Kimoto M (2009) Analysis on the dynamics of a wave-like teleconnection pattern along the summertime Asian jet based on a reanalysis dataset and climate model simulations. J Meteorol Soc Jpn Ser II 87(3):561–580

    Article  Google Scholar 

  • Kosaka Y, Chowdary JS, Xie SP, Min YM, Lee JY (2012) Limitations of seasonal predictability for summer climate over East Asia and the Northwestern Pacific. J Clim 25(21):7574–7589

    Article  Google Scholar 

  • Li Y, Xu H, Liu D (2011) Features of the extremely severe drought in the east of Southwest China and anomalies of atmospheric circulation in summer 2006. Acta Meteorologica Sinica 25(2):176–187

    Article  Google Scholar 

  • Li J, Ding T, Jia X, Zhao X (2015) Analysis on the extreme heat wave over China around Yangtze River Region in the summer of 2013 and its main contributing factors. Adv Meteorol. https://doi.org/10.1155/2015/706713

    Google Scholar 

  • Lu R-Y, Chen R-D (2016) A review of recent studies on extreme heat in China. Atmos Ocean Sci Lett 9(2):114–121

    Article  Google Scholar 

  • Nitta T (1987) Convective activities in the tropical western Pacific and their impact on the Northern Hemisphere summer circulation. J Meteorol Soc Jpn 65:373–390

    Article  Google Scholar 

  • Parthasarathy B, Kumar KR, Munot AA (1991) Evidence of secular variations in Indian monsoon rainfall—circulation relationships. J Clim 4(9):927–938

    Article  Google Scholar 

  • Pearson KJ, Shaffrey LC, Methven J, Hodges KI (2015) Can a climate model reproduce extreme regional precipitation events over England and Wales? Quart J R Meteorol Soc 141(689):1466–1472

    Article  Google Scholar 

  • Peng JB (2014) An investigation of the formation of the heat wave in southern China in summer 2013 and the relevant abnormal subtropical high activities. Atmos Ocean Sci Lett 7(4):286–290

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (1996) Monsoons and the dynamics of deserts. Quart J R Meteorol Soc 122(534):1385–1404

    Article  Google Scholar 

  • Sardeshmukh PD, Hoskins BJ (1988) The generation of global rotational flow by steady idealized tropical divergence. J Atmos Sci 45(7):1228–1251

    Article  Google Scholar 

  • Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley SJ, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic blocking in a climate model. Geophys Res Lett 38:L23703. https://doi.org/10.1029/2011GL049573

    Article  Google Scholar 

  • Scaife AA et al (2017) Tropical rainfall, rossby waves and regional winter climate predictions. Quart J Roy Met Soc 143:1–11. https://doi.org/10.1002/qj.2910

    Article  Google Scholar 

  • Song F, Zhou T, Wang L (2013) Two modes of the silk road pattern and their interannual variability simulated by LASG/IAP AGCM SAMIL2. 0. Adv Atmos Sci 30(3):908

    Article  Google Scholar 

  • Stott PA, Allen M, Christidis N, Dole RM, Hoerling M, Huntingford C, Pall P, Perlwitz J, Stone D (2013) Attribution of weather and climate-related events. In: Climate science for serving society. Springer, Netherlands, pp 307–337

    Chapter  Google Scholar 

  • Sun J, Wang H (2012) Changes of the connection between the summer North Atlantic Oscillation and the East Asian summer rainfall. J Geophys Res Atmos 117:D8

    Article  Google Scholar 

  • Sun J, Wang H, Yuan W (2008) Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. J Geophys Res Atmos 113:D15

    Google Scholar 

  • Sun Y et al (2014) Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Change 4(12):1082–1085

    Article  Google Scholar 

  • Tan J, Zheng Y, Song G, Kalkstein LS, Kalkstein AJ, Tang X (2007) Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol 51:193–200

    Article  Google Scholar 

  • Thompson V, Dunstone NJ, Scaife AA, Smith DM, Slingo JM, Brown S, Belcher SE (2017) High risk of unprecedented UK rainfall in the current climate. Nat Commun 8:107. https://doi.org/10.1038/s41467-017-00275-3

    Article  Google Scholar 

  • van den Brink HW, Konnen GP, Opsteegh JD, van Oldenborgh GJ, Burgers G (2004) Improving 104-year surge level estimates using data of the ECMWF seasonal prediction system. Geophys Res Lett 31:L17210

    Google Scholar 

  • Wang N, Zhang Y (2015) Evolution of Eurasian teleconnection pattern and its relationship to climate anomalies in China. Clim Dyn 44(3–4):1017–1028

    Article  Google Scholar 

  • Wang B, Wu RG, Fu XH (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Climate 13:1517–1536

    Article  Google Scholar 

  • Wang W, Zhou W, Li X, Wang X, Wang D (2016) Synoptic-scale characteristics and atmospheric controls of summer heat waves in China. Clim Dyn 46(9–10):2923–2941

    Article  Google Scholar 

  • Watanabe M (2004) Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J Clim 17(24):4674–4691

    Article  Google Scholar 

  • Weedon GP et al (2014) The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour Res 50(9):7505–7514

    Article  Google Scholar 

  • Williams KD, Harris CM, Bodas-Salcedo A, Camp J, Comer RE, Copsey D, Fereday D, Graham T, Hill R, Hinton T, Hyder P (2015) The met office global coupled model 2.0 (GC2) configuration. Geosci Model Devel 8(5):1509–1524

    Article  Google Scholar 

  • WMO (2013) The global climate 2001–2010: a decade of climate extremes. WMO-No. 1103. World Meteorological Organization, Switzerland

    Google Scholar 

  • Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Nino. J Clim 22:730–747

    Article  Google Scholar 

  • Yadav RK (2017) Midlatitude Rossby wave modulation of the Indian summer monsoon. Q J R Meteorol Soc 143:2260–2271

    Article  Google Scholar 

  • Yasui S, Watanabe M (2010) Forcing processes of the summertime circumglobal teleconnection pattern in a dry AGCM. J Clim 23(8):2093–2114

    Article  Google Scholar 

  • Zheng F, Li J, Li Y, Zhao S, Deng D (2016) Influence of the summer NAO on the spring-NAO-based predictability of the East Asian summer monsoon. J Appl Meteorol Climatol 55(7):1459–1476

    Article  Google Scholar 

  • Zhou T, Ma S, Zou L (2014) Understanding a hot summer in central eastern China: summer 2013 in context of multimodel trend analysis. Bull Am Meteor Soc 95(2014):S54 9 )

    Google Scholar 

Download references

Acknowledgements

This work was supported by the UK-China Research and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund, and National Key Research Program and Development of China (2017YFC1502302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick J. Dunstone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, V., Dunstone, N.J., Scaife, A.A. et al. Risk and dynamics of unprecedented hot months in South East China. Clim Dyn 52, 2585–2596 (2019). https://doi.org/10.1007/s00382-018-4281-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-018-4281-5

Keywords

Navigation