Skip to main content

Advertisement

Log in

Variability and predictability of decadal mean temperature and precipitation over China in the CCSM4 last millennium simulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The modes of variability that arise from the slow-decadal (potentially predictable) and intra-decadal (unpredictable) components of decadal mean temperature and precipitation over China are examined, in a 1000 year (850–1850 AD) experiment using the CCSM4 model. Solar variations, volcanic aerosols, orbital forcing, land use, and greenhouse gas concentrations provide the main forcing and boundary conditions. The analysis is done using a decadal variance decomposition method that identifies sources of potential decadal predictability and uncertainty. The average potential decadal predictabilities (ratio of slow-to-total decadal variance) are 0.62 and 0.37 for the temperature and rainfall over China, respectively, indicating that the (multi-)decadal variations of temperature are dominated by slow-decadal variability, while precipitation is dominated by unpredictable decadal noise. Possible sources of decadal predictability for the two leading predictable modes of temperature are the external radiative forcing, and the combined effects of slow-decadal variability of the Arctic oscillation (AO) and the Pacific decadal oscillation (PDO), respectively. Combined AO and PDO slow-decadal variability is associated also with the leading predictable mode of precipitation. External radiative forcing as well as the slow-decadal variability of PDO are associated with the second predictable rainfall mode; the slow-decadal variability of Atlantic multi-decadal oscillation (AMO) is associated with the third predictable precipitation mode. The dominant unpredictable decadal modes are associated with intra-decadal/inter-annual phenomena. In particular, the El Niño–Southern Oscillation and the intra-decadal variability of the AMO, PDO and AO are the most important sources of prediction uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Cheung HN, Zhou W, Mok HY, Wu MC (2012) Relationship between Ural-Siberian blocking and the East Asian winter monsoon in relation to the Arctic oscillation and the El Niño-Southern Oscillation. J Clim 25:4242–4257

    Article  Google Scholar 

  • Cronin TM, Dwyer GS, Kamiya T, Schwede S, Willard DA (2003) Medieval warm period, little ice age and 20th century temperature variability from Chesapeake Bay. Glob Planet Change 36(1–2):17–29. https://doi.org/10.1016/s0921-8181(02)00161-3

    Article  Google Scholar 

  • Cui X, Gao Y, Gong D, Guo D, Furevik T (2013) Teleconnection between winter arctic oscillation and southeast Asian summer monsoon in the pre-industry simulation of a coupled climate model. Atmos Ocean Sci Lett 6(5):349–354

    Article  Google Scholar 

  • Ding Y, Wang Z, Sun Y (2008) Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: observed evidences. Int J Climatol 28:1139–1161. https://doi.org/10.1002/joc.1615

    Article  Google Scholar 

  • Ding Y, Sun Y, Wang Z, Zhu Y, Song Y (2009) Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summermonsoon Part II: Possible causes. Int J Climatol 29:1926–1944. https://doi.org/10.1002/joc.1759

    Article  Google Scholar 

  • Ding Q, Schweiger A, L’Heureux M, Battisti DS, Po-Chedley S, Johnson NC, Blanchard-Wriggleworth E, Harnos K, Zhang Q, Eastman R, Steig EJ (2017) Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat Clim Change 8 pp (online). https://doi.org/10.1038/NCLIMATE3241

    Article  Google Scholar 

  • Duan W, Song L, Li Y, Mao J (2013) Modulation of PDO on the predictability of the interannual variability of early summer rainfall over south China. J Geophys Res Atmos 118:1–14. https://doi.org/10.1002/2013JD019862

    Article  Google Scholar 

  • Dukhovskoy DS, Johnson MA, Proshutinsky A (2004) Arctic decadal variability: an auto-oscillatory system of heat and fresh water exchange. Geophys Res Lett 31(3):445–446

    Article  Google Scholar 

  • Feng J, Li JP (2011) Influence of El Nino Modoki on spring rainfall over south China. J Geophys Res 116:D13012. https://doi.org/10.1029/2010JD015160

    Article  Google Scholar 

  • Frederiksen CS, Zheng XG (2004) Variability of seasonal-mean fields arising from intraseasonal variability: part 2, application to NH winter circulations. Clim Dyn 23:193–206

    Article  Google Scholar 

  • Frederiksen CS, Zheng X, Grainger S (2016) Simulated modes of inter-decadal predictability in sea surface temperature. Clim Dyn 46(7–8): 2224–2231. https://doi.org/10.1007/s00382-015-2699-65

    Article  Google Scholar 

  • Frederiksen CS, Ying K, Grainger S, Zheng X (2017) Modes of interannual variability in northern hemisphere winter atmospheric circulation in CMIP5 models: evaluation, projection and role of external forcing. Clim Dyn. https://doi.org/10.1007/s00382-017-3776-9 46(7–8): 2231–2245 (online)

    Article  Google Scholar 

  • Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res 113(D23):D23111. https://doi.org/10.1029/2008JD010239

    Article  Google Scholar 

  • Gong D, Wang S (2003) Influence of Arctic Oscillation on winter climate over China. J Geog Sci 13(2):208–216

    Article  Google Scholar 

  • Gong D, Wang S, Zhu J (2001) East Asian winter monsoon and Arctic oscillation. Geophys Res Lett 28:2073–2076

    Article  Google Scholar 

  • Gong D, Yang J, Kim S, Gao Y, Guo D, Zhou T, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37:2199–2216

    Article  Google Scholar 

  • He S, Gao Y, Li F, Wang H, He Y (2017) Impact of Arctic Oscillation on the East Asian climate: A review. Earth Sci Rev 164:48–62

    Article  Google Scholar 

  • Huang R, Xu YH, Zhou LT (1999) The interdecadal variation of summer rainfall in China and the drought trend in north China. Plateau Meteor 18:465–475 (Chinese)

    Google Scholar 

  • Jones PD, Osborn TJ, Briffa KR (2001) The evolution of climate over the last millennium. Science 292(5517):662–667. https://doi.org/10.1126/science.1059126

    Article  Google Scholar 

  • Ju J, Lü J, Cao J, Ren J (2005) Possible impacts of the Arctic Oscillation on the interdecadal variation of summer monsoon rainfall in East Asia. Adv Atmos Sci 22:39–48. https://doi.org/10.1007/BF02930868

    Article  Google Scholar 

  • Kim JW, Yeh SW, Chang EC (2013) Combined effect of El Niño–Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Clim Dyn. https://doi.org/10.1007/s00382-013-1730-z

    Article  Google Scholar 

  • Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N, Teng H (2013) Last millennium climate and its variability in CCSM4. J Clim 26(4):1085–1111. https://doi.org/10.1175/jcli-d-11-00326.1

    Article  Google Scholar 

  • Li S, Bates GT (2007) Influence of the Atlantic Multidecadal Oscillation on the winter climate of East China. Adv Atmos Sci 24(1):126–135

    Article  Google Scholar 

  • Li Y, Leung LR (2013) Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China. J Clim 26:899–917

    Article  Google Scholar 

  • Li J, Wang JXL (2003) A modified zonal index and its physical sense. Geophys Res Lett 30(12):1632. https://doi.org/10.1029/2003GL017441

    Article  Google Scholar 

  • Li B, Zhou T (2011) ENSO-related principal interannual variability modes of early and late summer rainfall over East Asia in SST driven AGCM simulations. J Geophys Res 116:D14118

    Article  Google Scholar 

  • Li C, He J, Zhu J (2004) A review of decadal/interdecadal climate variation studies in China. Adv Atmos Sci 21(3):425–436

    Article  Google Scholar 

  • Li S, Hoerling MP, Peng S (2006) Coupled ocean-atmosphere response to Indian Ocean warmth. Geophys Res Lett 33(7):L07713. https://doi.org/10.1029/2005GL025558

    Article  Google Scholar 

  • Liang S, Ding Y, Zhao N, Sun Y (2014) Analysis of the interdecadal changes of the wintertime surface air temperature over mainland China and regional atmospheric circulation characteristics during 1960–2013. Chin J Atmos Sci 38(5):974–992 (Chinese)

    Google Scholar 

  • Liu Y, Huang G, Huang R (2011) Inter-decadal variability of summer rainfall in eastern China detected by the Lepage test. Theor Appl Climatol 106:481–488. https://doi.org/10.1007/s00704-011-0442-8

    Article  Google Scholar 

  • Liu J, Wang H, Lu E, Kumar A (2016) Decadal modulation of East China winter precipitation by ENSO. Clim Dyn. https://doi.org/10.1007/s00382-016-3427-6

    Article  Google Scholar 

  • Lou J, Zheng X, Frederiksen CS, Liu H, Grainger S, Ying K (2017) Simulated decadal modes of the NH atmospheric circulation arising from intra-decadal variability, external forcing and slow-decadal climate processes. Clim Dyn doi. https://doi.org/10.1007/s00382-016-3229-x

    Article  Google Scholar 

  • Lu R, Dong B, Ding H (2006) Impact of the Atlantic Multidecadal Oscillation on the Asian summer monsoon. Geophys Res Lett 33:L24701. https://doi.org/10.1029/2006GL027655

    Article  Google Scholar 

  • Ma Z (2007) The interdecadal trend and shift of dry/wet over the central part of northern China and their relationship to the Pacific Decadal Oscillation (PDO). Chin Sci Bull 52(15):2130–2139

    Article  Google Scholar 

  • Ma Z, Fu C (2006) Some evidence of drying trend over northern China from 1951 to 2004. Chin Sci Bull 51:2913–2925

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079

    Article  Google Scholar 

  • Muller WA, Frankignoul C, Chouaib N (2008) Observed decadal tropical Pacific-North Atlantic teleconnections. Geophys Res Lett 35:L24810. https://doi.org/10.1029/2008GL035901

    Article  Google Scholar 

  • Overland JE, Dethloff K, Francis JA, Hall RJ, Hanna E, Kim S-J, Screen JA, Shepherd TG, Vihma J (2016) Nonlinear response of mid-latitude weather to the changing Artic. Nat Clim Change 6:992–999. https://doi.org/10.1038/NCLIMATE3121

    Article  Google Scholar 

  • Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P, Dong B (2007) Decadal to multidecadal and the climate change background. J Geophys Res Atmos 112:D18115. https://doi.org/10.1029/2007JD008411

    Article  Google Scholar 

  • Qian C, Zhou T (2014) Multidecadal variability of north China aridity and its relationship to PDO during 1900–2010. J Clim 27:1210–1222

    Article  Google Scholar 

  • Qian C, Yu JY, Chen G (2014) Decadal summer drought frequency in China: the increasing influence of the Atlantic Multi-decadal Oscillation. Environ Res Lett 9:124004 (9 pp)

    Article  Google Scholar 

  • Si D, Ding Y (2013) Decadal change in the correlation pattern between the Tibetan Plateau winter snow and the East Asian summer precipitation during 1979–2011. J Clim 26:7622–7634. https://doi.org/10.1175/JCLI-D-12-00587.1

    Article  Google Scholar 

  • Si D, Ding Y (2016) Oceanic Forcings of the Interdecadal Variability in East Asian Summer Rainfall. J Clim 29:7633–7649. https://doi.org/10.1175/JCLI-D-15-0792.1

    Article  Google Scholar 

  • Sun J, Wang H (2006) Relationship between Arctic Oscillation and Pacific Decadal Oscillation on decadal timescale. Chin Sci Bull 51(1):75–79. https://doi.org/10.1007/s11434-004-0221-3

    Article  Google Scholar 

  • Sun J, Wang H, Yuan W (2008) Decadal variations of the relationship between the summer North Atlantic Oscillation and middle East Asian air temperature. J Geophys Res 113:D15107. https://doi.org/10.1029/2007JD009626

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Trenberth KE, Shea DJ (2006) Atlantic hurricanes and natural variability in 2005. Geophys Res Lett 33:L12704. https://doi.org/10.1029/2006GL026894

    Article  Google Scholar 

  • Wang B, Linho (2002) Rainy season of the Asian-Pacific summer Monsoon. J Clim 15:386–398

    Article  Google Scholar 

  • Wang W, Anderson BT, Kaufmann RK, Myneni RB (2004a) The relation between the North Atlantic oscillation and SSTs in the North Atlantic Basin. J Clim 17:4752–4759

    Article  Google Scholar 

  • Wang S, Zhu J, Cai J (2004b) Interdecadal variability of temperature and precipitation in China since 1880. Adv Atmos Sci 21(3):307–313

    Article  Google Scholar 

  • Wang L, Chen W, Huang R (2008) Interdecadal modulation of PDO on the impact of ENSO on the East Asian winter monsoon. Geophys Res Lett 35(20):L20702. https://doi.org/10.1029/2008GL035287

    Article  Google Scholar 

  • Wang Y, Li S, Luo D (2009) Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation. J Geophys Res 114:D02112

    Google Scholar 

  • Wang J, Yang B, Ljungqvist FC, Zhao Y (2013) The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium. J Quat Sci 28(7):653–658

    Article  Google Scholar 

  • Wang B, Lee JY, Xiang B (2015) Asian summer monsoon rainfall predictability: a predictable mode analysis. Clim Dyn 44:61–74

    Article  Google Scholar 

  • Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic Press, San Diego, p 648

    Google Scholar 

  • Wu BY, Huang R (1999) Effects of the extremes in the North Atlantic Oscillation on the East Asia winter monsoon. Chin J Atmos Sci 23:226–236

    Google Scholar 

  • Wu B, Wang J (2002) Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea–ice extent. Adv Atmos Sci 19:297–320

    Article  Google Scholar 

  • Wu R, Hu Z, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16:3742–3758

    Article  Google Scholar 

  • Wu B, Zhang R, D’Arrigo R (2006) Distinct modes of East Asian winter monsoon. Mon Wea Rev 134(8):2165–2179

    Article  Google Scholar 

  • Wu R, Yang S, Liu S, Sun L, Lian Y, Gao Z (2010) Changes in the relationship between northeast China summer temperature and ENSO. J Geophys Res 115:D21107. https://doi.org/10.1029/2010D014422

    Article  Google Scholar 

  • Xu Z, Fan K, Wang H (2015) Decadal variation of summer precipitation over china and associated atmospheric circulation after the late 1990s. J Clim 28:4086–4106

    Article  Google Scholar 

  • Yang X, Xie Q, Zhu Y, Sun X, Guo Y (2005) Decadal to interdecadal variability of precipitation in north China and associated atmospheric and oceanic anomaly patterns. Chin J Geophys 48:789–797 (Chinese)

    Google Scholar 

  • Yang Q, Ma Z, Fan X, Yang Z, Xu Z, Wu P (2017) Decadal modulation of precipitation patterns over east china by sea surface temperature anomalies. J Clim. https://doi.org/10.1175/JCLI-D-16-0793.1

    Article  Google Scholar 

  • Ying K, Zhao T, Quan XW, Zheng X, Frederiksen CS (2015) Interannual variability of autumn to spring seasonal precipitation in eastern China. Clim Dyn 45(1–2):253–271

    Article  Google Scholar 

  • Ying K, Zheng X, Zhao T, Frederiksen CS, Quan XW (2017) Identifying the predictable and unpredictable patterns of spring-to-autumn precipitation over eastern China. Clim Dyn 48(9):3183–3206. https://doi.org/10.1007/s00382-016-3258-5

    Article  Google Scholar 

  • Yu L (2013) Potential correlation between the decadal East Asian summer monsoon variability and the Pacific decadal oscillation. Atmos Ocean Sci Lett 6(5):394–397

    Article  Google Scholar 

  • Yu L, Furevik T, Otterå OH, Gao Y (2015) Modulation of the Pacific decadal oscillation on the summer precipitation over East China: A comparison of observations to 600-year control run of Bergen Climate Model. Clim Dyn 44(1–2):475–494. https://doi.org/10.1007/s00382-014-2141-5

    Article  Google Scholar 

  • Yuan Y, Li C, Yang S (2014) Decadal anomalies of winter precipitation over southern China in association with El Niño and La Niña. J Meteorol Res 28:91–110

    Google Scholar 

  • Zhang L, Zhou T (2015) Drought over East Asia: a review. J Clim 28:3375–3399. https://doi.org/10.1175/JCLI-D-14-00259.1

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim. https://doi.org/10.1175/1520-0442

    Article  Google Scholar 

  • Zhang Y, Li T, Wang B (2004) Decadal change of the spring snow depth over the Tibetan Plateau: the associated circulation and influence on the East Asian summer monsoon. J Clim 17(1):2780–2793

    Article  Google Scholar 

  • Zhang R, Wu B, Zhao P, Han J (2008) The decadal shift of the summer climate in the late 1980s over eastern China and its possible causes. Acta Meteor Sin 22:435–445

    Google Scholar 

  • Zhang L, Zhu X, Fraedrich K, Sielmann F, Zhi X (2014) Interdecadal variability of winter precipitation in Southeast China. Clim Dyn 43:2239–2248

    Article  Google Scholar 

  • Zheng X, Sugi M, Frederiksen CS (2004) Interannual variability and predictability in an ensemble of climate simulations with the MRI-JMA AGCM. J Meteor Soc Japan 82:1–18

    Article  Google Scholar 

  • Zhou L, Huang R (2009) Interdecadal variability of summer rainfall in northwest China and its possible causes. Int J Climatol 30:549–557. https://doi.org/10.1002/joc.1923

    Article  Google Scholar 

  • Zhou W, Li C, Chan JCL (2006) The interdecadal variations of the summer monsoon rainfall over south China. Meteorol Atmos Phys 93:165–175

    Article  Google Scholar 

  • Zhou T, Gong D, Li J, Li B (2009) Detecting and understanding the multi-decadal variability of the East Asian summer monsoon recent progress and state of affairs. Meteor Z 18:455–467. https://doi.org/10.1127/0941-2948/2009/0396

    Article  Google Scholar 

  • Zhu Y, Yang X (2003) Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China. Acta Meteorologica Sinica 61(6):641–654 (Chinese)

    Google Scholar 

  • Zhu Y, Wang H, Zhou W, Ma J (2011) Recent changes in the summer precipitation pattern in East China and the background circulation. Clim Dyn 36:1463–1473. https://doi.org/10.1007/s00382-010-0852-9

    Article  Google Scholar 

  • Zhu Y, Wang H, Ma J, Wang T, Sun J (2015) Contribution of the phase transition of Pacific Decadal Oscillation to the late 1990s’ shift in East China summer rainfall. J Geophy Res Atmos 120:8817–8827. https://doi.org/10.1002/2015JD023545

    Article  Google Scholar 

  • Zhu Y, Wang T, Ma J (2016) Influence of internal decadal variability on the summer rainfall in Eastern China as Simulated by CCSM4. Adv Atmos Sci 33:706–714

    Article  Google Scholar 

  • Zuo J, Ren H-L, Li W (2015) Contrasting impacts of the Arctic Oscillation on surface air temperature anomalies in Southern China between early and middle-to-late winter. J Clim 28:4015–4026

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0600402) and National Natural Science Foundation of China (41675094 and 41405090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carsten S. Frederiksen or Tianbao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, K., Frederiksen, C.S., Zheng, X. et al. Variability and predictability of decadal mean temperature and precipitation over China in the CCSM4 last millennium simulation. Clim Dyn 51, 2989–3008 (2018). https://doi.org/10.1007/s00382-017-4060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-4060-8

Keywords

Navigation