Skip to main content

Advertisement

Log in

Origin of Indian summer monsoon rainfall biases in CMIP5 multimodel ensemble

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Significant biases of coupled general circulation models (CGCMs) lead to considerable uncertainty in climate predictions and projections. Based on the historical simulations in the phase 5 of the Coupled Model Intercomparison Project (CMIP5), we identify that state-of-the-art CGCMs commonly simulate insufficient Indian summer monsoon (ISM) rainfall along with too weak monsoon circulations. Such ISM rainfall/circulation biases, however, are absent in the Atmospheric Model Intercomparison Project simulations forced by observed sea surface temperature (SST), suggesting that the common ISM biases are not intrinsic errors of the atmospheric models but arise from the interaction between the monsoon and the oceans. A multimodel statistical analysis further shows that the ISM rainfall/circulation biases in CMIP5 models can be traced back to the excessively cold SST over the northern Indian Ocean (NIO). The systemic cold SST biases in the NIO suppress local convective activity and reduce air temperature, resulting in a weak north–south thermal contrast in the mid-upper troposphere. This would induce an excessively weak ISM circulation and resultant insufficient monsoon rainfall. Furthermore, the dynamic effect of cold NIO SST biases on the ISM rainfall/circulation simulations is also confirmed through several sensitivity experiments by using the widely-applied Weather Research and Forecasting model. To the extent that the cold SST biases over the NIO may originate from an excessively strong Indian winter monsoon, improving the winter monsoon simulation is an important prerequisite for better summer climate simulations and predictions/projections over the broad ISM region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arpe K, Dümenil L, Giorgetta MA (1998) Variability of the Indian Monsoon in the ECHAM3 model: Sensitivity to sea surface temperature, soil moisture, and the stratospheric quasi-biennial oscillation. J Clim 11:1837–1858

    Article  Google Scholar 

  • Bombardi RJ, Schneider EK, Mark L, Halder S, Singh B, Tawfik AB, Dirmeyer PA, Kinter JL (2015) Improvements in the representation of the Indian summer monsoon in the NCEP climate forecast system version 2. Clim Dyn 45:2485–2498

    Article  Google Scholar 

  • Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26:2279–2287

    Article  Google Scholar 

  • Chandrasekar A, Kitoh A (1998) Impact of Localized Sea Surface Temperature Anomalies over the Equatorial Indian Ocean on the Indian Summer Monsoon. J Meteorol 76:841–853

    Google Scholar 

  • Chowdary JS, Bandgar AB, Gnanaseelan C, Luo J-J (2015) Role of tropical Indian Ocean air–sea interactions in modulating Indian summer monsoon in a coupled model. Atmos Sci Lett 16:170–176

    Article  Google Scholar 

  • Chung CE, Ramanathan V (2006) Weakening of North Indian SST gradients and the monsoon rainfall in India and the Sahel. J Clim 19:2036–2045

    Article  Google Scholar 

  • Dai A, Li H, Sun Y, Hong L-C, Lin H, Chou C, Zhou T (2013) The relative roles of upper and lower tropospheric thermal contrasts and tropical influences in driving Asian summer monsoons. J Geophys Res 118:7024–7045

    Article  Google Scholar 

  • DelSole T, Shukla J (2012) Climate models produce skillful predictions of Indian summer monsoon rainfall. Geophys Res Lett 39:L09703. doi:10.1029/2012GL051279

    Article  Google Scholar 

  • Gadgil S, Gadgil S (2006) The Indian monsoon, GDP and agriculture. Econ Polit Wkly XLI:4887–4895

    Google Scholar 

  • Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS, Xavier PK (2006) Increasing trend of extreme rain events over India in a warming environment. Nature 314:1442–1445

    Google Scholar 

  • He B, Wu G, Liu Y, Bao Q (2015a) Astronomical and hydrological perspective of mountain impacts on the Asian summer monsoon. Sci Rep 5:17586. doi:10.1038/srep17586

    Article  Google Scholar 

  • He C, Zhou T, Lin A, Wu B, Gu D, Li C, Zheng B (2015b) Enhanced or weakened Western North Pacific Subtropical High under global warming? Sci Rep 5:16771. doi:10.1038/srep16771

    Article  Google Scholar 

  • Huffman GJ, Bolvin DT, Nelkin EJ, Adler RF (2015) GPCP version 2.2 combined precipitation data set. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. doi:10.5065/D6R78C9S

  • Izumo T, de Boyer Montegut C, Luo JJ, Behera SK, Masson S, Yamagata T (2008) The role of the western Arabian Sea upwelling in Indian monsoon rainfall variability. J Clim 21:5603–5623

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II Reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Levine RC, Turner AG (2012) Dependence of Indian monsoon rainfall on moisture fluxes across the Arabian Sea and the impact of coupled model sea surface temperature biases. Clim Dyn 38:2167–2190

    Article  Google Scholar 

  • Levine RC, Turner AG, Marathayil D, Martin GM (2013) The role of northern Arabian Sea surface temperature biases in CMIP5 model simulations and future projections of Indian summer monsoon rainfall. Clim Dyn 41:155–172

    Article  Google Scholar 

  • Li G, Xie SP (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703. doi:10.1029/2012GL053777

    Google Scholar 

  • Li G, Xie SP (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780

    Article  Google Scholar 

  • Li Z, Yang S (2017) Influences of spring-to-summer SSTs over different Indian Ocean domains on the Asian summer monsoon. Asian Pacific J Atmos Sci. doi:10.1007/s13143-017-0050-3

  • Li G, Xie SP, Du Y (2015a) Monsoon-Induced Biases of Climate Models over the Tropical Indian Ocean. J Clim 28:3058–3072

    Article  Google Scholar 

  • Li G, Xie SP, Du Y (2015b) Climate model errors over the South Indian Ocean thermocline dome and their effect on the basin mode of interannual variability. J Clim 28:3093–3098

    Article  Google Scholar 

  • Li G, Xie SP, Du Y (2016) A Robust but Spurious Pattern of Climate Change in Model Projections over the Tropical Indian Ocean. J Clim 29:5589–5608

    Article  Google Scholar 

  • Li G, Xie SP, He C, Chen Z (2017) Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nature Clim Change, in press, doi:10.1038/nclimate3387

  • Marathayil D, Turner AG, Shaffrey LC, Levine RC (2013) Systematic winter sea-surface temperature biases in the northern Arabian Sea in HiGEM and the CMIP3 models. Environ Res Lett 8:014028

    Article  Google Scholar 

  • Raju A, Parekh A, Chowdary JS, Gnanaseelan C (2015) Assessment of the Indian summer monsoon in the WRF regional climate model. Clim Dyn 44:3077–3100

    Article  Google Scholar 

  • Ramesh KV, Goswami P (2014) Assessing reliability of regional climate projections: the case of Indian monsoon. Sci Rep 4:4071. doi:10.1038/srep04071

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late Nineteenth Century. J Geophys Res 108(D14):4407

    Article  Google Scholar 

  • Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496

    Article  Google Scholar 

  • Sandeep S, Ajayamohan RS (2014) Origin of cold bias over the Arabian Sea in climate models. Sci Rep 4:6403. doi:10.1038/srep06403

    Article  Google Scholar 

  • Seager R, Naik N, Vecchi GA (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668

    Article  Google Scholar 

  • Shukla J (1975) Effect of Arabian sea-surface temperature anomaly on Indian summer monsoon: a numerical experiment with the GFDL model. J Atmos Sci 32:503–511

    Article  Google Scholar 

  • Shukla RP, Huang B (2016a) Mean state and interannual variability of the Indian summer monsoon simulation by NCEP CFSv2. Clim Dyn 46:3845–3864

    Article  Google Scholar 

  • Shukla RP, Huang B (2016b) Interannual variability of the Indian summer monsoon associated with the air–sea feedback in the northern Indian Ocean. Clim Dyn 46:1977–1990

    Article  Google Scholar 

  • Singh GP, Oh JH (2007) Impact of Indian Ocean sea-surface temperature anomaly on Indian summer monsoon precipitation using a regional climate model. Int J Climatol 27:1455–1465. doi:10.1002/joc.1485

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker D, Duda MG, Huang XY, Wang W (2008) A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475 + STR, NCAR, Boulder. 10.5065/D68S4MVH

    Google Scholar 

  • Sperber KR, Annamalai H, Kang I-S, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Article  Google Scholar 

  • Sayantani O, Gnanaseelan C, Chowdary JS, Parekh A, Rahul S (2015) Arabian Sea SST evolution during spring to summer transition period and the associated processes in coupled climate models. Int J Climatol. doi:10.1002/joc.4511

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Wang ZQ, Duan AM, Wu GX (2014) Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon. Sci China Earth Sci 57:1480 – 1493

    Article  Google Scholar 

  • Wang ZQ, Duan AM, Li MS, He B (2016a) Influences of thermal forcing over the slope/platform of the Tibetan Plateau on Asian summer monsoon: numerical studies with the WRF model. Chinese J Geophys 59:474–487

    Article  Google Scholar 

  • Wang ZQ, Duan AM, Wu GX, Yang S (2016b) Mechanism for occurrence of precipitation over the southern slope of the Tibetan Plateau without local surface heating. Int J Climatol 36:4164–4171

    Article  Google Scholar 

  • Wang ZQ, Duan AM, Yang S, Ullah K (2017) Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau. J Geophys Res 122:614–630. doi:10.1002/2016JD025515

    Article  Google Scholar 

  • Webster PJ, Yang S (1992) Monsoon and ENSO: Selectively interactive systems. Q J R Meteorol Soc 118:877–926

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability and the prospectus for prediction. J Geophys Res 103:14451–14510

    Article  Google Scholar 

  • Wu GX, Liu BQ (2014) Roles of forced and inertially unstable convection development in the onset process of Indian summer monsoon. Sci China Earth Sci 57:1438–1451

    Article  Google Scholar 

  • Wu GX, Liu YM, He B, Bao Q, Duan AM, Jin FF (2012) Thermal controls on the Asian summer monsoon. Sci Rep 2:404

    Article  Google Scholar 

  • Yoo SH, Yang S, Ho C-H (2006) Variability of the Indian Ocean sea surface temperature and its impacts on Asian-Australian monsoon climate. J Geophys Res 111:630–637. doi:10.1029/2005JD006001

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported jointly by the National Key Scientific Research Plan of China (Grant 2014CB953900), the National Natural Science Foundation of China (Grants 41605038, 41661144019, 41690123, and 41406026), the Natural Science Foundation of Guangdong Province (Grant 2015A030310224), the Guangzhou Joint Research Center for Atmospheric Sciences of CMA, the Guangdong Natural Science Funds for Distinguished Young Scholar (2015A030306008), the Youth Innovation Promotion Association CAS, the Pearl River S&T Nova Program of Guangzhou (201506010094), and the Open Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ1603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, G. & Yang, S. Origin of Indian summer monsoon rainfall biases in CMIP5 multimodel ensemble. Clim Dyn 51, 755–768 (2018). https://doi.org/10.1007/s00382-017-3953-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-017-3953-x

Keywords

Navigation