Climate Dynamics

, Volume 51, Issue 1–2, pp 563–579 | Cite as

Influence of decadal sea surface temperature variability on northern Brazil rainfall in CMIP5 simulations

  • Julián VillamayorEmail author
  • Tércio Ambrizzi
  • Elsa Mohino


The Amazonia and Northeast regions of northern Brazil are characterized by very different rainfall regimes but have certain similarities in terms of their variability. The precipitation variability in both regions is strongly linked to the tropical Atlantic sea surface temperature (SST) gradient and the tropical Pacific SST anomalies, which at decadal timescales are modulated by the Atlantic Multidecadal Variability (AMV) and the Interdecadal Pacific Oscillation (IPO) modes of SST, respectively. On the other hand, it has been found that state-of-the-art models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) are able to reproduce some of the characteristics of the low-frequency SST variability modes. In this work we analyze how CMIP5 models simulate the observed response of precipitation in the Amazonia and Northeast regions to the AMV and the IPO and the atmospheric mechanisms involved. Results show that, in both CMIP5 simulations and observations, Amazonia and Northeast rainfall response to the AMV is the opposite, due to the modulation of the intertropical convergence zone (ITCZ) position. Conversely, the IPO affects equally both regions as a consequence of anomalous subsidence over the entire northern Brazil triggered by warm SST anomalies in the tropical Pacific. Such results suggest that an improvement of the predictability of decadal SST modes will directly revert into a better prediction of changes in the Amazonia and Northeast rainfall at longer timescales.


CMIP5 Decadal variability Northeast Brazil Amazonia AMV IPO 



The authors thank the editor Dr. Corti and the helpful comments of the two anonymous reviewers. This work is the result of a 3-month stay of J.V. in the University of São Paulo funded by the Spanish Ministry of Economy and Competitiveness (MINECO) with support for short stays (EEBB-I-15-09241-MINECO) within the scholarship he has been granted (BES-2013-063821-MINECO). Special thanks to Iracema F. A. Cavalcanti for making the stay possible and her helpful comments on the results. The research leading to these results has received funding from the projects PREFACE (EUFP7/2007-2013 Grant Agreement 603521) and MULCLIVAR (CGL2012-38923-C02-01-MINECO). T.A. had the financial support from FAPESP (Procs. Ns. 13/50521-7 and 08/58101-9) and CNPq. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and the climate modeling groups (listed in the supplementary Table S1) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Supplementary material

382_2017_3941_MOESM1_ESM.pdf (7.7 mb)
Supplementary material 1 (PDF 7877 KB)


  1. Ambrizzi T, Souza EB, Pulwarty RS (2004) The Hadley and Walker regional circulations and associated ENSO impacts on South American seasonal rainfall. In: The Hadley circulation: Present, past and future, Springer, pp 203–235Google Scholar
  2. Andreoli RV, Kayano MT (2005) ENSO-related rainfall anomalies in South America and associated circulation features during warm and cold Pacific decadal oscillation regimes. Int J Climatol 25(15):2017–2030. doi: 10.1002/joc.1222 CrossRefGoogle Scholar
  3. Booth BBB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484(7393):228–232. doi: 10.1038/nature10946, url doi: 10.1038/nature10946 CrossRefGoogle Scholar
  4. Chao Y, Ghil M, McWilliams JC (2000) Pacific interdecadal variability in this century’s sea surface temperatures. Geophys Res Lett 27(15):2261–2264. doi: 10.1029/1999GL011324 CrossRefGoogle Scholar
  5. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28CrossRefGoogle Scholar
  6. de Albuquerque Cavalcanti IF (2015) The influence of extratropical Atlantic Ocean region on wet and dry years in North-Northeastern Brazil. Front Environ Sci 3(April):1–10. doi: 10.3389/fenvs.2015.00034 Google Scholar
  7. Deser C, Phillips AS, Hurrell JW (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17(16):3109–3124. doi: 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2
  8. Dettinger M, Battisti D, McCabe G, Bitz C, Garreaud R (2001) Interhemispheric effects of interannual and decadal ENSO-like climate variations on the Americas. Interhemispheric climate linkages: Present and Past Climates in the Americas and their Societal Effects pp 1–16, url %7Ddavid/pep1.pdfGoogle Scholar
  9. Doblas-Reyes F, Andreu-Burillo I, Chikamoto Y, García-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues L, Oldenborgh GJV (2013) Initialized near-term regional climate change prediction. Nat Commun 4:1715. doi: 10.1038/ncomms2704 CrossRefGoogle Scholar
  10. Drumond A, Nieto R, Trigo R, Ambrizzi T, Souza E, Gimeno L (2010) A lagrangian identification of the main sources of moisture affecting northeastern brazil during its pre-rainy and rainy seasons. PloS One 5(6):e11, 205CrossRefGoogle Scholar
  11. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10(9):2147–2153CrossRefGoogle Scholar
  12. Farneti R (2017) Modelling interdecadal climate variability and the role of the ocean. Wiley Interdisciplinary Reviews: Climate Change 8(1)Google Scholar
  13. Farneti R, Molteni F, Kucharski F (2014) Pacific interdecadal variability driven by tropical extratropical interactions. Climate Dynamics 42(11–12):3337–3355. doi: 10.1007/s00382-013-1906-6 CrossRefGoogle Scholar
  14. Folland CK, Colman AW, Rowell DP, Davey MK (2001) Predictability of northeast Brazil rainfall and real-time forecast skill, 1987–98. Journal of Climate 14(9):1937–1958. doi: 10.1175/1520-0442(2002)015<1993:NOPONB>2.0.CO;2
  15. Fuentes-Franco R, Giorgi F, Coppola E, Fred K (2015) The role of ENSO and PDO in variability of winter precipitation over North America from twenty first century CMIP5 projections. Clim Dyn 17:1–19. doi: 10.1007/s00382-015-2767-y Google Scholar
  16. Gaetani M, Mohino E (2013) Decadal prediction of the sahelian precipitation in CMIP5 simulations. J Clim 26(19):7708–7719. doi: 10.1175/JCLI-D-12-00635.1 CrossRefGoogle Scholar
  17. Good P, Ja Lowe, Collins M, Moufouma-Okia W (2008) An objective tropical Atlantic sea surface temperature gradient index for studies of south Amazon dry-season climate variability and change. Philos Trans R Soc Lond Ser B, Biol Sci 363(1498):1761–1766. doi: 10.1098/rstb.2007.0024 CrossRefGoogle Scholar
  18. Grimm AM, Zilli MT (2009) Interannual variability and seasonal evolution of summer monsoon rainfall in South America. J Clim 22(9):2257–2275. doi: 10.1175/2008JCLI2345.1 CrossRefGoogle Scholar
  19. Harris I, Jones P, Osborn T, Lister D (2014) Updated high-resolution grids of monthly climatic observations-the cru ts3. 10 dataset. Int J Climatol 34(3):623–642CrossRefGoogle Scholar
  20. Hastenrath S (2012) Exploring the climate problems of Brazil’s Nordeste: a review. Clim Change 112(2):243–251. doi: 10.1007/s10584-011-0227-1 CrossRefGoogle Scholar
  21. Hastenrath S, Greischar L (1993) Circulation mechanisms related to northeast Brazil rainfall anomalies. J Geophys Res Atmos 98:5093–5102CrossRefGoogle Scholar
  22. Hastenrath S, Heller L (1977) Dynamics of climatic hazards in northeast Brazil. doi: 10.1002/qj.49710343505
  23. Hawkins E, Robson J, Sutton R, Smith D, Keenlyside N (2011) Evaluating the potential for statistical decadal predictions of sea surface temperatures with a perfect model approach. Clim Dyn 37(11–12):2495–2509CrossRefGoogle Scholar
  24. Haywood JM, Jones A, Bellouin N, Stephenson D (2013) Asymmetric forcing from stratospheric aerosols impacts Sahelian rainfall. Nat Clim Change 3(7):660–665CrossRefGoogle Scholar
  25. Joshi MK, Kucharski F (2017) Impact of interdecadal pacific oscillation on indian summer monsoon rainfall: an assessment from cmip5 climate models. Clim Dyn 48(7–8):2375–2391CrossRefGoogle Scholar
  26. Kayano MT, Andreoli RV (2006) Relationships between rainfall anomalies over northeastern Brazil and the El Niño-Southern Oscillation. J Geophys Res Atmos 111(13):1–11. doi: 10.1029/2005JD006142 Google Scholar
  27. Kerr RA (2000) A north atlantic climate pacemaker for the centuries. Science (New York, NY) 288(5473):1984–1985. doi: 10.1126/science.288.5473.1984 CrossRefGoogle Scholar
  28. Knight JR (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20):L20,708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  29. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33(17):L17,706. doi: 10.1029/2006GL026242 CrossRefGoogle Scholar
  30. Kousky VE (1979) Frontal Influences on Northeast. Brazil. doi: 10.1175/1520-0493(1979)107<1140:FIONB>2.0.CO;2
  31. Labraga JC, Frumento O, López M (2000) The atmospheric water vapor cycle in South America and the tropospheric circulation. Am Meteorol Soc 13(11):1899–1915Google Scholar
  32. Latif M, Keenlyside NS (2011) A perspective on decadal climate variability and predictability. Deep Sea Res Part II: Topical Stud Oceanogr 58(17):1880–1894CrossRefGoogle Scholar
  33. Levine AF, McPhaden MJ, Frierson DM (2017) The impact of the amo on multidecadal enso variability. Geophys Res Lett 44(8):3877–3886CrossRefGoogle Scholar
  34. MacDonald GM, Case RA (2005) Variations in the Pacific Decadal Oscillation over the past millennium. Geophys Res Lett 32(8):L08,703. doi: 10.1029/2005GL022478 CrossRefGoogle Scholar
  35. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44. doi: 10.1023/a:1015820616384 CrossRefGoogle Scholar
  36. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bulletin of the American Meteorological Society 78(6):1069–1079. doi: 10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2
  37. Marengo JA (2004) Interdecadal variability and trends of rainfall across the Amazon basin. Theor Appl Climatol 78(1–3):79–96Google Scholar
  38. Marengo JA (2009) Long-term trends and cycles in the hydrometeorology of the amazon basin since the late 1920s. Hydrol Processes 23(22):3236–3244. doi: 10.1029/97JD02551 CrossRefGoogle Scholar
  39. Ja Marengo, Tomasella J, Uvo CR (1998) Trends in streamflow and rainfall in tropical South America: Amazonia, eastern Brazil, and northwestern Peru. J Geophys Res 103(D2):1775. doi: 10.1029/97JD02551 CrossRefGoogle Scholar
  40. Marengo JA, Liebmann B, Grimm AM, Misra V, Dias PLS, Cavalcanti IFA, Carvalho LMV, Berbery EH, Ambrizzi T, Vera CS, Saulo AC, Nogues-paegle J, Zipser E, Seth A, Alves LM (2012) Recent developments on the South American monsoon system. Int J Climatol 32(1):1–21. doi: 10.1002/joc.2254 CrossRefGoogle Scholar
  41. Martin ER, Thorncroft C, Booth BBB (2014) The Multidecadal Atlantic SST-Sahel rainfall teleconnection in CMIP5 simulations. Journal of Climate 27(2):784–806. doi: 10.1175/JCLI-D-13-00242.1 CrossRefGoogle Scholar
  42. McCarthy GD, Haigh ID, Hirschi JJM, Grist JP, Da Smeed (2015) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521(7553):508–510. doi: 10.1038/nature14491 CrossRefGoogle Scholar
  43. Meehl Ga HuA (2006) Megadroughts in the Indian monsoon region and southwest North America and a mechanism for associated multidecadal Pacific Sea surface temperature anomalies. J Clim 19(9):1605–1623. doi: 10.1175/JCLI3675.1 CrossRefGoogle Scholar
  44. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E et al (2009a) Decadal prediction: can it be skillful? Bull Am Meteorol Soc 90(10):1467–1485. doi: 10.1175/JCLI3675.1 CrossRefGoogle Scholar
  45. Meehl GA, Hu A, Santer BD (2009b) The Mid-1970s Climate Shift in the Pacific and the relative roles of forced versus inherent decadal variability. J Clim 22(3):780–792CrossRefGoogle Scholar
  46. Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: role in climatic regime shifts. Geophys Res Lett 26(7):855–858. doi: 10.1029/1999GL900119 CrossRefGoogle Scholar
  47. Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37(3–4):419–440. doi: 10.1007/s00382-010-0867-2 CrossRefGoogle Scholar
  48. Moura AD, Shukla J (1981) On the dynamics of droughts in Northeast Brazil: Observations, theory, and numerical experiments with a general circulation model. doi: 10.1175/1520-0469(1981)038<2653:OTDODI>2.0.CO;2
  49. Newman M (2013) An empirical benchmark for decadal forecasts of global surface temperature anomalies. J Clim 26(14):5260–5269CrossRefGoogle Scholar
  50. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. Journal of Climate 16(23):3853–3857. doi: 10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2
  51. Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Di Lorenzo E, Mantua NJ, Miller AJ, Minobe S, Nakamura H et al (2016) The pacific decadal oscillation, revisited. J Clim 29(12):4399–4427CrossRefGoogle Scholar
  52. Nobre P, Shukla J (1996) Variations of Sea Surface Temperature, Wind Stress, and Rainfall over the Tropical Atlantic and South America. Journal of Climate 9(10):2464–2479. doi: 10.1175/1520-0442(1996)009<2464:VOSSTW>2.0.CO;2
  53. Parker D, Folland C, Scaife A, Knight J, Colman A, Baines P, Dong B (2007) Decadal to multidecadal variability and the climate change background. J Geophys Res: Atmos 112(18):1–18. doi: 10.1029/2007JD008411 Google Scholar
  54. Philander SG (1990) El niño, la niña, and the southern oscillationGoogle Scholar
  55. Poli P, Hersbach H, Tan D, Dee D, Thépaut Jn, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R (2013) ERA report series p 59. 20C.era_report_series_14.pdf
  56. Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15(5):319–324. doi: 10.1007/s003820050284
  57. Rao VB, Hada K (1990) Characteristics of rainfall over Brazil: annual variations and connections with the Southern Oscillation. Theor Appl Climatol 42:81–91. doi: 10.1007/BF00868215 CrossRefGoogle Scholar
  58. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical. doi: 10.1029/2002JD002670
  59. Riahi K, Grübler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Change 74:887–935. doi: 10.1016/j.techfore.2006.05.026 CrossRefGoogle Scholar
  60. Robertson AW, Mechoso CR (1998) Interannual and decadal cycles in river flows of Southeastern South America. J Clim 11:2570–2581CrossRefGoogle Scholar
  61. Rodrigues RR, Haarsma RJ, Campos EJD, Ambrizzi T (2011) The impacts of inter-El Niño variability on the tropical Atlantic and northeast Brazil climate. J Clim 24(13):3402–3422. doi: 10.1175/2011JCLI3983.1 CrossRefGoogle Scholar
  62. Ronchail J, Cochonneau G, Molinier M, Guyot JL, De Miranda Chaves AG, Guimarães V, De Oliveira E (2002) Interannual rainfall variability in the Amazon basin and sea-surface temperatures in the equatorial Pacific and the tropical Atlantic Oceans. Int J Climatol 22(13):1663–1686. doi: 10.1002/joc.815 CrossRefGoogle Scholar
  63. Rotstayn LD, Lohmann U (2002) Tropical rainfall trends and the indirect aerosol effect. Journal of Climate 15(15):2103–2116. doi: 10.1175/1520-0442(2002)015<2103:TRTATI>2.0.CO;2
  64. Schneider N, Cornuelle BD (2005) The forcing of the Pacific Decadal Oscillation. J Clim 18(21):4355–4373. doi: 10.1175/JCLI3527.1 CrossRefGoogle Scholar
  65. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2016) Gpcc full data reanalysis version 7.0: Monthly land-surface precipitation from rain gauges built on gts based and historic data. doi: 10.5065/D6000072
  66. Shakun JD, Shaman J (2009) Tropical origins of North and South Pacific decadal variability. Geophys Res Lett 36(19):L19,711. doi: 10.1029/2009GL040313 CrossRefGoogle Scholar
  67. da Silva VdPR (2004) On climate variability in Northeast of Brazil. J Arid Environ 58(4):575–596. doi: 10.1016/j.jaridenv.2003.12.002 CrossRefGoogle Scholar
  68. Souza EB, Ambrizzi T (2002) ENSO impacts on the South American rainfall during 1980s: Hadley and Walker circulation. Atmósfera 15(2):105–120Google Scholar
  69. Taylor KE, Stouffer RJ, Ga Meehl (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  70. Terray L (2012) Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys Res Lett 39(October):6–11. doi: 10.1029/2012GL053046 Google Scholar
  71. Tourre YM, Rajagopalan B, Kushnir Y, Barlow M, White WB (2001) Patterns of coherent decadal and interdecadal climate signals in the Pacific Basin during the 20 th century. 10.1029/2000GL012780Google Scholar
  72. Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Climate Dynamics 9:303–319. doi: 10.1007/BF00204745, 0601117 CrossRefGoogle Scholar
  73. van Oldenborgh GJ, Doblas-Reyes FJ, Wouters B, Hazeleger W (2012) Decadal prediction skill in a multi-model ensemble. Clim Dyn 38(7–8):1263–1280CrossRefGoogle Scholar
  74. Villamayor J, Mohino E (2015) Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5 simulations. Geophysical Research Letters 42(4):1214–1222, 10.1002/2014GL062473, url Scholar
  75. Wainer I, Soares J (1997) North northeast Brazil rainfall and its decadal‐scale relationship to wind stress and sea surface temperature 24(3):277–280Google Scholar
  76. Willmott CJ, Matsuura K, Legates D (2001) Terrestrial air temperature and precipitation: monthly and annual time series (1950–1999). Center for climate research version 1Google Scholar
  77. Wu S, Liu Z, Zhang R, Delworth TL (2011) On the observed relationship between the pacific decadal oscillation and the atlantic multi-decadal oscillation. J Oceanogr 67(1):27–35CrossRefGoogle Scholar
  78. Yim BY, Kwon M, Min HS, Kug JS (2015) Pacific Decadal Oscillation and its relation to the extratropical atmospheric variation in CMIP5. Clim Dyn 44(5–6):1521–1540. doi: 10.1007/s00382-014-2349-4 CrossRefGoogle Scholar
  79. Yin L, Fu R, Shevliakova E, Dickinson RE (2013) How well can cmip5 simulate precipitation and its controlling processes over tropical south america? Clim Dyn 41(11–12):3127–3143CrossRefGoogle Scholar
  80. Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34(2):249–264. doi: 10.1007/s00382-009-0551-6 CrossRefGoogle Scholar
  81. Zhang L, Delworth TL (2015) Analysis of the characteristics and mechanisms of the pacific decadal oscillation in a suite of coupled models from the geophysical fluid dynamics laboratory. J Clim 28(19):7678–7701CrossRefGoogle Scholar
  82. Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J Geophys Res Oceans 118(10):5772–5791. doi: 10.1002/jgrc.20390 CrossRefGoogle Scholar
  83. Zhang R, Delworth TL (2007) Impact of the atlantic multidecadal oscillation on north pacific climate variability. Geophysical Research Letters 34(23)Google Scholar
  84. Zhang R, Delworth TL, Sutton R, Hodson DLR, Dixon KW, Held IM, Kushnir Y, Marshall J, Ming Y, Msadek R, Robson J, Rosati AJ, Ting M, Vecchi GA (2013) Have Aerosols caused the observed Atlantic multidecadal variability? J Atmos Sci 70(4):1135–1144. doi: 10.1175/JAS-D-12-0331.1 CrossRefGoogle Scholar
  85. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. Journal of Climate 10(5):1004–1020. doi:  10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2
  86. Zhou J, Lau KM (2001) Principal modes of interannual and decadal variability of summer rainfall over South America. International Journal of Climatology 21(13):1623–1644. doi: 10.1002/joc.700 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Julián Villamayor
    • 1
    • 2
    Email author
  • Tércio Ambrizzi
    • 3
  • Elsa Mohino
    • 1
  1. 1.Departamento de Geofísica y Meteorología, Facultad de C.C. FísicasUniversidad Complutense de Madrid (UCM)MadridSpain
  2. 2.Instituto de Geociencias (IGEO)MadridSpain
  3. 3.Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG)Universidade de São Paulo (USP)São PauloBrazil

Personalised recommendations