Asian droughts in the last millennium: a search for robust impacts of Pacific Ocean surface temperature variabilities

  • Entao Yu
  • Martin P. King
  • Stefan Sobolowski
  • Odd Helge Otterå
  • Yongqi Gao
Article

Abstract

This study investigates the robustness of hydroclimate impacts in Asia due to major drivers of climate variability in the Pacific Ocean, namely the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO). Composite analyses are carried out on a tree ring-based Palmer Drought Severity Index as well as on a long coupled global climate model control experiment. El Niño (La Niña) has a robust impact on wet (dry) conditions in West Asia and dry (wet) conditions in South Asia. For the PDO, impacts are found throughout the Asia domain. However, identifying the robust signals due to PDO from these analyses is more challenging due to the limited lengths of the data. Results indicate that West Asia (South and Southeast Asia) experiences wet (dry) conditions during periods of positive PDO. For East Asia, there is indication that positive (negative) PDO is associated with wet (dry) conditions around and southward of 30°N and dry (wet) conditions north of this latitude. This result is consistent with the current understanding of the role of PDO in the “southern-flood northern-drought” phenomenon in China. We suggest that specific extreme events or periods have regional impacts with strong intensities that cannot be fully explained through the composite analysis of ENSO, PDO, or any combination thereof. Two such examples are shown to illustrate this: the Strange Parallel Drought (1756–1768 CE) and the Great Drought (1876–1878 CE). Additionally, during these climate events, ENSO and PDO can be in phases which are not consistent with the required phases of these drivers that explain the concurrent drought and pluvial conditions in Asia. Therefore, not all historical drought and pluvial events in Northeast Asia and northern China can be related back to ENSO or PDO. Finally, we also examine the dynamical characteristics of the reported hydroclimatic impacts in the global climate model experiment. There is moisture transport into (out of) regions that exhibit wet (dry) conditions in a manner consistent with the various ENSO and PDO composites, thereby providing physical explanation of the index-based results.

Keywords

Asian droughts and pluvials El Niño-Southern Oscillation impact Pacific Decadal Oscillation impact 

Supplementary material

382_2017_3897_MOESM1_ESM.ppt (1.9 mb)
Supplementary material 1 (PPT 1902 KB)

References

  1. Alley WM (1984) Palmer Drought Severity Index: limitations and assumptions. J Clim Appl Meteorol 23:1100–1109CrossRefGoogle Scholar
  2. Buckley BM, Anchukaitis KJ, Penny D et al (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Nat Acad Sci 107(15):6748–6752. doi:10.1073/pnas.0910827107 CrossRefGoogle Scholar
  3. Cook ER, Anchukaitis KJ, Buckley BM, D’Arrigo RD, Jacoby GC, Wright WE (2010) Asian monsoon failure and megadrought during the last millennium. Science 328:486–489. doi:10.1126/science.1185188 CrossRefGoogle Scholar
  4. Dai AG, Trenberth KE, Qian TT (2004) A global dataset of Palmer drought severity index for 1870–2002: relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:1117–1130. doi:10.1175/JHM-386.1 CrossRefGoogle Scholar
  5. Dilley M, Heyman BN (1995) ENSO and disaster: droughts, floods and El Niño/Southern Oscillation warm events. Disasters 19(3):181–193. doi:10.1111/j.1467-7717.1995.tb00338.x CrossRefGoogle Scholar
  6. Dong X (2016) Influences of the Pacific Decadal Oscillation on the East Asian summer monsoon in non-ENSO years. Atmos Sci Lett 17:115–120. doi:10.1002/asl.634 CrossRefGoogle Scholar
  7. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074. doi:10.1126/science.289.5487.2068 CrossRefGoogle Scholar
  8. Haines A, Kovats RS, Campbell-Lendrum D, Corvalán C (2006) Climate change and human health: impacts, vulnerability and public health. Public Health 120(7):586–596. doi:10.1016/j.puhe.2006.01.002 CrossRefGoogle Scholar
  9. Hamon WR (1961) Estimating potential evapotranspiration. Proc Am Soc Civ Eng 87:107–120Google Scholar
  10. Hernandez M, Ummenhofer CC, Anchukaitis KJ (2015) Multi-scale drought and ocean-atmosphere variability in monsoon Asia. Environ Res Lett 10:074010. doi:10.1088/1748-9326/10/7/074010 CrossRefGoogle Scholar
  11. Jacobi J, Perrone D, Duncan LL, Hornberger G (2013) A tool for calculating the Palmer drought indices. Water Resour Res 49:6086–6089. doi:10.1002/wrcr.20342 CrossRefGoogle Scholar
  12. Karl TR (1986) Sensitivity of the Palmer Drought Severity Index and Palmer’s Z-index to their calibration coefficients including potential evapotranspiration. J Clim Appl Meteorol 25:77–86CrossRefGoogle Scholar
  13. Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-frequency variability of the Indian Monsoon-ENSO relationship and the tropical Atlantic: the “weakening” of the 1980s and 1990s. J Clim 20:4255–4266. doi:10.1175/JCLI4254.1 CrossRefGoogle Scholar
  14. Lau NC, Nath MJ (2006) ENSO modulation of the interannual and intraseasonal variability of the East Asian Monsoon—a model study. J Clim 19:4508–4530. doi:10.1175/JCLI3878.1 CrossRefGoogle Scholar
  15. Li H, Dai A, Zhou T, Lu J (2010) Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim Dyn 34:501–514. doi:10.1007/s00382-008-0482-7 CrossRefGoogle Scholar
  16. Li J, Xie SP, Cook ER, Huang G, D’Arrigo R, Liu F, Ma J, Zheng XT (2011) Interdecadal modulation of El Niño amplitude during the past millennium. Nat Clim Change 1(2):118–114. doi:10.1038/nclimate1086 CrossRefGoogle Scholar
  17. Mann ME, Gille EP, Bradley RS, Hughes MK, Overpeck JT, Keimig FT, Gross WS (2000) Global temperature patterns in past centuries: an interactive presentation. IGBP Pages/World Data Center for Paleoclimatology Data Contribution Series #2000-075. NOAA/NCDC Paleoclimatology Program, BoulderGoogle Scholar
  18. Mann ME et al (2009) Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326:1256–1260. doi:10.1126/science.1177303 CrossRefGoogle Scholar
  19. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  20. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi:10.1002/joc.1181 CrossRefGoogle Scholar
  21. Otto-Bliesner B, Brady E, Fasullo J, Jahn A, Landrum L, Stevenson S, Rosenbloom N, Mai A, Strand G (2016) Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model (CESM). Bull Am Meteorol Soc. doi:10.1175/BAMS-D-14-00233.1 Google Scholar
  22. Palmer WC (1965) Meteorological drought. Research Paper 45 US Department of Commerce p 58Google Scholar
  23. Piao S, Ciais P, Huang Y et al (2010) The impacts of climate change on water resources and agriculture in China. Nature 467(7311):43–51. doi:10.1038/nature09364 CrossRefGoogle Scholar
  24. Qian C, Zhou TJ (2014) Multidecadal variability of North China aridity and its relationship to PDO during 1900–2100. J Clim 27:1210–1222. doi:10.1175/JCLI-D-13-00235.1 CrossRefGoogle Scholar
  25. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670 CrossRefGoogle Scholar
  26. Rockstrom J, Lannerstad M, Falkenmark M (2007) Assessing the water challenge of a new green revolution in developing countries. Proc Natl Acad Sci 104:6253–6260. doi:10.1017/S1355770X05002329 CrossRefGoogle Scholar
  27. Shah T (2008) Taming the anarchy: groundwater governance in South Asia. RFF Press, Washington DCGoogle Scholar
  28. Shi F, Zhao S, Guo Z, Goosse H (2017) Multi-proxy reconstructions of precipitation field in China over the past 500 years. Clim Past Discuss. doi:10.5194/cp-2017-2 (in review) Google Scholar
  29. Sivakumar MVK, Das HP, Brunini O (2005) Impacts of present and future climate variability and change on agriculture and forestry in the arid and semi-arid tropics. Clim Change 70:31–72. doi:10.1007/1-4020-4166-7_4 CrossRefGoogle Scholar
  30. Song F, Zhou T, Qian Y (2014) Responses of East Asian summer monsoon to natural and anthropogenic forcings in the 17 latest CMIP5 models. Geophys Res Lett. doi:10.1002/2013GL058705 Google Scholar
  31. Syed FS, Giorgi F, Pal JS, King MP (2006) Effect of remote forcings on the winter precipitation of central southwest Asia part 1: observations. Theor Appl Climatol 86:147–160. doi:10.1007/s00704-005-0217-1 CrossRefGoogle Scholar
  32. The NCAR Command Language (2014) Boulder, Colorado: UCAR/NCAR/CISL/TDD. doi:10.5065/D6WD3XH5
  33. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94. doi:10.2307/210739 CrossRefGoogle Scholar
  34. Tong J, Qiang Z, Deming Z, Yijin W (2006) Yangtze floods and droughts (China) and teleconnections with ENSO activities (1470–2003). Quat Int 144(1):29–37CrossRefGoogle Scholar
  35. Vorosmarty JC, Green P, Salisbury J, Lammers R (2000) Global water resources: vulnerability from climate change and population growth. Science 289(5477):284–288. doi:10.1126/science.289.5477.284 CrossRefGoogle Scholar
  36. Wang B, Wu R, Fu X (2000) Pacific-East Asian teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536CrossRefGoogle Scholar
  37. Wang T, Otterå OH, Gao Y, Wang HJ (2012) The response of the North Pacific Decadal Variability to strong tropical volcanic eruptions. Clim Dyn 39:2917. doi:10.1007/s00382-012-1373-5 CrossRefGoogle Scholar
  38. Wang T, Wang HJ, Otterå OH, Gao YQ, Suo LL, Furevik T, Yu L (2013) Anthropogenic agent implicated as a prime driver of shift in precipitation in eastern China in late 1970s. Atmos Chem Phys 13(24):12433–12450. doi:10.5194/acp-13-12433-2013 CrossRefGoogle Scholar
  39. Wang S, Huang J, He Y, Guan Y (2014) Combined effects of the Pacific Decadal Oscillation and El Niño-Southern Oscillation on global land dry–wet Changes. Sci Rep 4:6651. doi:10.1038/srep06651 CrossRefGoogle Scholar
  40. Wu R, Hu Z, Kirtman B (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16(22):3742–3758CrossRefGoogle Scholar
  41. Yang F, Shi F, Kang S, Wang S, Xiao Z, Nakatsuka T, Shi J (2013) Comparison of the dryness/wetness index in China with the Monsoon Asia Drought Atlas. Theor Appl Climatol 114:553. doi:10.1007/s00704-013-0858-4 CrossRefGoogle Scholar
  42. Yu L, Furevik T, Otterå OH, Gao YQ (2015) Modulation of the Pacific Decadal Oscillation on the summer precipitation over East China: a comparison of observations to 600-years control run of Bergen Climate Model. Clim Dyn 44(1):475–494. doi:10.1007/s00382-014-2141-5 CrossRefGoogle Scholar
  43. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar
  44. Zhang W, Li H, Stuecker MF, Jin F-F, Turner AG (2016) A new understanding of El Nino’s impact over East Asia: dominance of the ENSO Combination Mode. J Clim 29:4347–4359. doi:10.1175/JCLI-D-15-0104.1 CrossRefGoogle Scholar
  45. Zhu YL, Wang HJ, Ma JH, Wang T, Sun JQ (2015) Contribution of the phase transition of Pacific decadal oscillation to the late 1990s’ shift in East China summer rainfall. J Geophys Res 120(17):8817–8827. doi:10.1002/2015JD023545 Google Scholar
  46. Zou X, Zhai P, Zhang Q (2005) Variations in droughts over China 1951–2003. Geophys Res Lett 32(L04707). doi:10.1029/2004GL021853

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Entao Yu
    • 1
    • 2
  • Martin P. King
    • 3
  • Stefan Sobolowski
    • 3
  • Odd Helge Otterå
    • 3
  • Yongqi Gao
    • 1
    • 4
  1. 1.Nansen-Zhu International Research Centre, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  3. 3.Uni Research ClimateBjerknes Centre of Climate ResearchBergenNorway
  4. 4.Nansen Environmental and Remote Sensing CenterBjerknes Centre for Climate ResearchBergenNorway

Personalised recommendations