Advertisement

Climate Dynamics

, Volume 53, Issue 12, pp 7153–7168 | Cite as

More reliable coastal SST forecasts from the North American multimodel ensemble

  • G. HervieuxEmail author
  • M. A. Alexander
  • C. A. Stock
  • M. G. Jacox
  • K. Pegion
  • E. Becker
  • F. Castruccio
  • D. Tommasi
Article

Abstract

The skill of monthly sea surface temperature (SST) anomaly predictions for large marine ecosystems (LMEs) in coastal regions of the United States and Canada is assessed using simulations from the climate models in the North American Multimodel Ensemble (NMME). The forecasts based on the full ensemble are generally more skillful than predictions from even the best single model. The improvement in skill is particularly noteworthy for probability forecasts that categorize SST anomalies into upper (warm) and lower (cold) terciles. The ensemble provides a better estimate of the full range of forecast values than any individual model, thereby correcting for the systematic over-confidence (under-dispersion) of predictions from an individual model. Probability forecasts, including tercile predictions from the NMME, are used frequently in seasonal forecasts for atmospheric variables and may have many uses in marine resource management.

Keywords

Seasonal prediction SST anomaly Coastal ecosystems Climate models Multimodel ensemble forecast 

Notes

Acknowledgements

We thank the NOAA Climate Program Office (CPO) for providing funding for this research. DT was funded by a Special Early-Stage Exploration and Development grant from NOAA’s office of oceanic and atmospheric research (OAR) with additional support from NOAA’s National Marine Fisheries Service.

Supplementary material

382_2017_3652_MOESM1_ESM.pdf (4.2 mb)
Supplementary material 1 (PDF 4338 KB)

References

  1. Alexander MA, Deser C (1995) A mechanism for the recurrence of midlatitude SST anomalies during winter. J Phys Oceanogr 25:122–137CrossRefGoogle Scholar
  2. Anderson DLT et al (2003) Comparison of the ECMWF seasonal forecast system 1 and 2, including the relative performance for the 1997/8 El Nino. Tech. Memo. 404. ECMWF, Reading, pp 93Google Scholar
  3. Barnston AG (1994) Linear statistical short-term climate predictive skill in the Northern Hemisphere. J Clim 7:1513–1564. doi: 10.1175/1520-0442(1994)007<1513:LSSTCP>2.0.CO;2 CrossRefGoogle Scholar
  4. Barth JA, Menge BA, Lubchenco J, Chan F, Bane JM, Kirincich AR, McManus MA, Nielsen KJ, Pierce SD, Washburn L (2007) Delayed upwelling alters nearshore coastal ocean ecosystems in the northern California current. Proc Natl Acad Sci 104:3719–3724CrossRefGoogle Scholar
  5. Becker E, van den Dool HM (2016) Probabilistic seasonal forecasts in the North American multi model ensemble: a baseline skill assessment. J Clim 29:3015–3026. doi: 10.1175/JCLI-D-14-00862.1 CrossRefGoogle Scholar
  6. Becker E, van den Dool HM, Zhang Q (2014) Predictability and forecast skill in NMME. J Clim 27:5891–5906. doi: 10.1175/JCLI-D-13-00597.1 CrossRefGoogle Scholar
  7. Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011) Persistence and Inherent Predictability of Arctic Sea Ice in a GCM Ensemble and Observations. J Clim 24(1):231–250CrossRefGoogle Scholar
  8. Boyer TP et al (2013) World ocean database 2013. NOAA Atlas NESDIS 72. Levitus S, Ed Mishonov A (eds) Silver Spring, pp 209. doi: 10.7289/V5NZ85MT
  9. Brier GW (1950) Verification of forecasts expressed in terms of probability. Mon Weather Rev 78:1–3CrossRefGoogle Scholar
  10. Buizza R (1997) Potential forecast skill of ensemble prediction and spread and skill distributions of the ECMWF Ensemble Prediction System. Mon Weather Rev 125:99–119. doi: 10.1175/1520-0493(1997)125<0099:PFSOEP>2.0.CO;2 CrossRefGoogle Scholar
  11. DelSole T, Yang X, Tippett MK (2013) Is unequal weighting significantly better than equal weighting for multi-model forecasting? Q J R Meteorol Soc 139:176–183. doi: 10.1002/qj.1961 CrossRefGoogle Scholar
  12. Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:644–667Google Scholar
  13. Derber J, Rosati A (1989) A global oceanic data assimilation system. J Phys Oceanogr 19:1333–1347CrossRefGoogle Scholar
  14. DeWitt DG (2005) Retrospective forecasts of interannual sea surface temperature anomalies from 1982 to present using a directly coupled atmosphere–ocean general circulation model. Mon Weather Rev 133:2972–2995CrossRefGoogle Scholar
  15. Eveson JP et al (2015) Seasonal forecasting of tuna habitat in the Great Australian Bight. Fish Res 170:39–49CrossRefGoogle Scholar
  16. Goddard L, Mason SJ, Zebiak SE, Ropelewski CF, Basher R, Cane MA (2001) Current approaches to seasonal-to-interannual climate predictions. Int J Climatol 21:1111–1152CrossRefGoogle Scholar
  17. Hagedorn R, Doblas-Reyes FJ, Palmer TN (2005) The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A 57:219–233. doi: 10.1111/j.1600-0870.2005.00103.x.CrossRefGoogle Scholar
  18. Hobday AJ, Hartog JR (2014) Derived ocean features for dynamic ocean management. Oceanography 27(4):134–145. doi: 10.5670/oceanog.2014.92 CrossRefGoogle Scholar
  19. Hobday AJ et al (2011) Ecological risk assessment for the effects of fishing. Fish Res 108:372–384. doi: 10.1016/j.fishres.2011.01.013 CrossRefGoogle Scholar
  20. Infanti JM, Kirtman BP (2016) Prediction and predictability of land and atmosphere initialized CCSM4 climate forecasts over North America. J Geophys Res: Atmos 121(21):12690–12701Google Scholar
  21. Jacox MG, Alexander MA, Hervieux G, Stock CA (2017) On the skill of seasonal sea surface temperature forecasts in the California current system and its connection to ENSO variability. Clim Dyn. doi: 10.1007/s00382-017-3608-y
  22. Ji M, Behringer DW, Leetmaa A (1998) An improved coupled model for ENSO prediction and implications for ocean initialization. Part II: the coupled model. Mon Weather Rev 126:1022–1034CrossRefGoogle Scholar
  23. Jin EK et al. (2008) Current status of ENSO prediction skill in coupled ocean–atmosphere model. Clim Dyn 31(6):647–664. doi: 10.1007/s00382-008-0397-3.CrossRefGoogle Scholar
  24. Jolliffe IT, Stephenson DB (2003) Forecast verification: a practitioner’s guide in atmospheric science. Wiley, Chichester, p 240Google Scholar
  25. Kirtman BP et al (2014) The North American multimodel ensemble phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95:585–601. doi: 10.1175/BAMS-D-12-00050.1 CrossRefGoogle Scholar
  26. Kirtman BP, Min D (2009) Multimodel ensemble ENSO prediction with CCSM and CFS. Mon Weather Rev 137:2908–2930CrossRefGoogle Scholar
  27. Kirtman BP, Zebiak SE (1997) ENSO simulation and prediction with a hybrid coupled model. Mon Weather Rev 125:2620–2641. doi: 10.1175/1520-0493(1997)125\2620:ESAPWA[2.0.CO;2 CrossRefGoogle Scholar
  28. Koh T-Y, Wang S, Bhatt BC (2012) A diagnostic suite to assess NWP performance. J Geophys Res 117:D13109. doi: 10.1029/2011JD017103 CrossRefGoogle Scholar
  29. Latif M, Barnett TP, Cane MA, Flugel M, Graham NE, von Storch H, Xu JS, Zebiak SE (1994) A review of ENSO prediction studies. Clim Dyn 9:167–179. doi: 10.1007/BF00208250.CrossRefGoogle Scholar
  30. Merryfield WJ et al (2013) The Canadian seasonal to interannual prediction system. Part I: models and initialization. Mon Weather Rev 141:2910–2945CrossRefGoogle Scholar
  31. Murphy AH (1973) A New Vector Partition of the Probability Score. J Appl Meteorol 12(4):595–600CrossRefGoogle Scholar
  32. National Research Council (2010) Assessment of intraseasonal to interannual climate prediction and predictability. The National Academies Press, Washington, DC. doi: 10.17226/12878 CrossRefGoogle Scholar
  33. Palmer TN et al (2004) Development of a European multimodel ensemble system for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872. doi: 10.1175/BAMS-85-6-853 CrossRefGoogle Scholar
  34. Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692CrossRefGoogle Scholar
  35. Pörtner HO, Peck MA (2010) Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J Fish Biol 77:1745–1779CrossRefGoogle Scholar
  36. Raftery AE, Gneiting T, Balabdaoui F, Polakowski M (2005) Using Bayesian model averaging to calibrate forecast ensembles. Mon Weather Rev 133:1155–1174CrossRefGoogle Scholar
  37. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution-blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  38. Rosati A, Miyakoda K, Gudgel R (1997) The impact of ocean initial conditions on ENSO forecasting with a coupled model. Mon Weather Rev 125:754–772CrossRefGoogle Scholar
  39. Saba VS, Griffes SM, Anderson WG, Winton M, Alexander MA, Delworth TL, Hare JA, Harrison MJ, Rosati A, Vechhi GA, Zhang R (2016) Enhanced warming of the Northwest Atlantic Ocean under climate change. J Geophys Res Oceans 121:118–132. doi: 10.1002/2015JC011346 CrossRefGoogle Scholar
  40. Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517CrossRefGoogle Scholar
  41. Saha S et al (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208CrossRefGoogle Scholar
  42. Sherman K, Duda AM (1999) An ecosystem approach to global assessment and management of coastal waters. Mar Ecol Prog Ser 190:271–287CrossRefGoogle Scholar
  43. Sherman K, Belkin IM, Friedland KD, O'Reilly J, Hyde K (2009) Accelerated Warming and Emergent Trends in Fisheries Biomass Yields of the World's Large Marine Ecosystems. AMBIO: J Hum Environ 38(4):215–224CrossRefGoogle Scholar
  44. Siedlecki SA, Kaplan IC, Hermann A, Nguyen T, Bond NA, Williams G, Newton J, Peterson WT, Alin S, Feely RA (2016) Experiments with seasonal forecasts of ocean conditions for the Northern region of the California current upwelling system. Nat Sci Rep 6. doi: 10.1038/srep27203 CrossRefGoogle Scholar
  45. Sooraj KP, Annamalai H, Kumar A, Wang H (2012) A comprehensive assessment of CFS seasonal forecast over the tropics. Weather Forecast 27: 3–27. doi: 10.1175/WAF-D-11-00014.1.CrossRefGoogle Scholar
  46. Spillman CM, Hartog JR, Hobday AJ, Hudson D (2015) Predicting environmental drivers for prawn aquaculture production to aid improved farm management. Aquaculture 447:56–65CrossRefGoogle Scholar
  47. Stock CA, Pegion K, Vecchi GA, Alexander MA, Tommasi D, Bond NA, Fratantoni PS, Gudgel RG, Kristiansen T, O’Brien TD, Xue Y, Yang X (2015) Seasonal sea surface temperature anomaly prediction for coastal ecosystems. Prog Oceanogr 137:219–236. doi: 10.1016/j.pocean.2015.06.007 CrossRefGoogle Scholar
  48. Stockdale TN (1997) Coupled ocean–atmosphere forecasts in the presence of climate drift. Mon Weather Rev 125:809–818CrossRefGoogle Scholar
  49. Stockdale TN, Anderson DLT, Alves JOS, Balmaseda MA (1998) Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature 392:370–373CrossRefGoogle Scholar
  50. Taylor KA (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192CrossRefGoogle Scholar
  51. Tippett MK, Barnston AG (2008) Skill of multimodel ENSO probability forecasts. Mon Weather Rev 136:3933–3946. doi: 10.1175/2008MWR2431.1 CrossRefGoogle Scholar
  52. van den Dool HM, Toth Z (1991) Why do forecasts for “near normal” often fail? Weather Forecast 6:76–85. doi: 10.1175/15200434(1991)006<0076:WDFFNO>2.0.CO;2 CrossRefGoogle Scholar
  53. Vecchi GA et al (2014) On the seasonal forecasting of regional tropical cyclone activity. J Clim 27:7994–8016CrossRefGoogle Scholar
  54. Vernieres G, Keppenne C, Rienecker MM, Jacob J, Kovach R (2012) The GEOS-ODAS, description and evaluation. NASA technical report series on global modeling and data assimilation, NASA/TM–2012–104606, vol 30Google Scholar
  55. Wang B et al (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33:93–117. doi: 10.1007/s00382-008-0460-0 CrossRefGoogle Scholar
  56. Weigel AP, Liniger MA, Appenzeller C (2008) Can multi-model combination really enhance the prediction skill of probabilistic ensemble forecasts? Q J R Meteorol Soc 134:241–260. doi: 10.1002/qj.210 CrossRefGoogle Scholar
  57. Wilks DS (1995) Statistical methods in the atmospheric sciences. Academic Press, Dublin, p 467Google Scholar
  58. Yang X et al (2012) A predictable AMO-like pattern in the GFDL fully coupled ensemble initialization and decadal forecasting system. J Clim 26:650–661CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • G. Hervieux
    • 1
    • 2
    Email author
  • M. A. Alexander
    • 2
  • C. A. Stock
    • 3
  • M. G. Jacox
    • 4
    • 5
  • K. Pegion
    • 6
  • E. Becker
    • 7
  • F. Castruccio
    • 8
  • D. Tommasi
    • 9
  1. 1.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  2. 2.NOAA Earth System Research Laboratory, Physical Sciences DivisionBoulderUSA
  3. 3.NOAA Geophysical Fluid Dynamics Laboratory, Princeton University Forrestal CampusPrincetonUSA
  4. 4.Institute of Marine SciencesUniversity of CaliforniaSanta CruzUSA
  5. 5.NOAA Southwest Fisheries Science Center, Environmental Research DivisionMontereyUSA
  6. 6.Department of Atmospheric, Oceanic and Earth SciencesGeorge Mason UniversityFairfaxUSA
  7. 7.NOAA/Climate Prediction Center and INNOVIM LLCCollege ParkUSA
  8. 8.NCAR/Climate and Global DynamicsBoulderUSA
  9. 9.Atmospheric and Oceanic Sciences ProgramPrinceton UniversityPrincetonUSA

Personalised recommendations