Climate Dynamics

, Volume 48, Issue 11–12, pp 3475–3487 | Cite as

Sub-decadal North Atlantic Oscillation variability in observations and the Kiel Climate Model

  • Annika ReintgesEmail author
  • Mojib Latif
  • Wonsun Park


The North Atlantic Oscillation (NAO) is the dominant mode of winter climate variability in the North Atlantic sector. The corresponding index varies on a wide range of timescales, from days and months to decades and beyond. Sub-decadal NAO variability has been well documented, but the underlying mechanism is still under discussion. Other indices of North Atlantic sector climate variability such as indices of sea surface and surface air temperature or Arctic sea ice extent also exhibit pronounced sub-decadal variability. Here, we use sea surface temperature and sea level pressure observations, and the Kiel Climate Model to investigate the dynamics of the sub-decadal NAO variability. The sub-decadal NAO variability is suggested to originate from dynamical large-scale air-sea interactions. The adjustment of the Atlantic Meridional Overturning Circulation to previous surface heat flux variability provides the memory of the coupled mode. The results stress the role of coupled feedbacks in generating sub-decadal North Atlantic sector climate variability, which is important to multiyear climate predictability in that region.


North Atlantic climate variability North Atlantic Oscillation (NAO) Sub-decadal variability Atmosphere–ocean interaction Atlantic Meridional Overturning Circulation (AMOC) 



This work was supported by the German BMBF-sponsored RACE and RACE II projects (Grant Agreement no. 03F0651B and 03F0729C respectively) and the EU FP7 NACLIM project (Grant Agreement no. 308299). The climate model integrations were performed at the Computing Centre of Kiel University. Data from the RAPID-WATCH MOC monitoring project are funded by the Natural Environment Research Council and are freely available from

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

382_2016_3279_MOESM1_ESM.docx (647 kb)
Supplementary material 1 (DOCX 646 kb)


  1. Álvarez-García F, Latif M, Biastoch A (2008) On multidecadal and quasi-decadal North Atlantic variability. J Clim 21:3433–3452. doi: 10.1175/2007JCLI1800.1 CrossRefGoogle Scholar
  2. Bjerknes J (1964) Atlantic air–sea interaction. Adv Geophys 10:1–82CrossRefGoogle Scholar
  3. Bryden HL, King BA, McCarthy GD, McDonagh EL (2014) Impact of a 30 % reduction in Atlantic Meridional Overturning during 2009–2010. Ocean Sci 10:683–691. doi: 10.5194/os-10-683-2014 CrossRefGoogle Scholar
  4. Cayan DR (1992) Latent and sensible heat flux anomalies over the northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881. doi: 10.1175/1520-0485(1992)022<0859:LASHFA>2.0.CO;2 CrossRefGoogle Scholar
  5. Cunningham SA, Roberts CD, Frajka-Williams E, Johns WE, Hobbs W, Palmer MD, Rayner D, Smeed DA, McCarthy G (2013) Atlantic Meridional Overturning circulation slowdown cooled the subtropical ocean. Geophys Res Lett 40:6202–6207. doi: 10.1002/2013GL058464 CrossRefGoogle Scholar
  6. Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26:2969–2972. doi: 10.1029/1999GL900613 CrossRefGoogle Scholar
  7. Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623. doi: 10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2 CrossRefGoogle Scholar
  8. Czaja A, Marshall J (2001) Observations of atmosphere-ocean coupling in the North Atlantic. Q J R Meteorol Soc 127:1893–1916. doi: 10.1256/smsqj.57602 CrossRefGoogle Scholar
  9. Deser C, Blackmon ML (1993) Surface climate variations over the North Atlantic ocean during winter: 1900–1989. J Clim 6:1743–1753. doi: 10.1175/1520-0442(1993)006<1743:SCVOTN>2.0.CO;2 CrossRefGoogle Scholar
  10. Drews A, Greatbatch RJ, Ding H, Latif M, Park W (2015) The use of a flow field correction technique for alleviating the North Atlantic cold bias with application to the Kiel Climate Model. Ocean Dyn 65:1079–1093. doi: 10.1007/s10236-015-0853-7 CrossRefGoogle Scholar
  11. Eden C, Greatbatch RJ (2003) A damped decadal oscillation in the North Atlantic Climate System. J Clim 16:4043–4060. doi: 10.1175/1520-0442(2003)016<4043:ADDOIT>2.0.CO;2 CrossRefGoogle Scholar
  12. Frankignoul C, Gastineau G, Kwon Y (2015) Wintertime atmospheric response to North Atlantic ocean circulation variability in a climate model. J Clim. doi: 10.1175/JCLI-D-15-0007.1 Google Scholar
  13. Fye FK, Stahle DW, Cook ER, Cleaveland MK (2006) NAO influence on sub-decadal moisture variability over central North America. Geophys Res Lett 33:L15707. doi: 10.1029/2006GL026656 CrossRefGoogle Scholar
  14. Gulev SK, Latif M, Keenlyside N, Park W, Koltermann KP (2013) North Atlantic ocean control on surface heat flux on multidecadal timescales. Nature 499:464–467. doi: 10.1038/nature12268 CrossRefGoogle Scholar
  15. Hurrell JW (1995) Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269:676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  16. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. American Geophysical Union, Washington. doi: 10.1029/134GM01 CrossRefGoogle Scholar
  17. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  18. Leith CE (1973) The standard error of time-average estimates of climatic means. J Appl Meteorol 12(6):1066–1068. doi: 10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2 CrossRefGoogle Scholar
  19. Marshall J, Johnson H, Goodman J (2001) Study of the interaction of the North Atlantic Oscillation with ocean circulation. J Clim 14:1399–1421. doi: 10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2 CrossRefGoogle Scholar
  20. Park W, Latif M (2005) Ocean Dynamics and the Nature of Air-Sea Interactions over the North Atlantic at Decadal Time Scales. J Clim 18:982–995. doi: 10.1175/JCLI-3307.1 CrossRefGoogle Scholar
  21. Park W, Latif M (2008) Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys Res Lett 35:L22703. doi: 10.1029/2008GL035779 CrossRefGoogle Scholar
  22. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel Climate Model. J Clim 22:71–92. doi: 10.1175/2008JCLI2261.1 CrossRefGoogle Scholar
  23. Saravanan R, McWilliams JC (1997) Stochasticity and spatial resonance in interdecadal climate fluctuations. J Clim 10:2299–2320. doi: 10.1175/1520-0442(1997)010<2299:SASRII>2.0.CO;2 CrossRefGoogle Scholar
  24. Saravanan R, McWilliams JC (1998) Advective ocean–atmosphere interaction: an analytical stochastic model with implications for decadal variability. J Clim 11:165–188. doi: 10.1175/1520-0442(1998)011<0165:AOAIAA>2.0.CO;2 CrossRefGoogle Scholar
  25. Smeed D, McCarthy G., Rayner D., Moat BI, Johns WE, Baringer MO, Meinen CS (2015) Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26 N from 2004 to 2014. British Oceanographic Data Centre—Natural Environment Research Council, UKGoogle Scholar
  26. Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388:563–567. doi: 10.1038/41523 CrossRefGoogle Scholar
  27. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys D 35:395–424. doi: 10.1016/0167-2789(89)90077-8 CrossRefGoogle Scholar
  28. Visbeck M, Hurrel JW, Polvani L, Cullen HM (2001) The North Atlantic Oscillation: past, present, and future. Proc Natl Acad Sci USA 98:12876–12877. doi: 10.1073/pnas.231391598 CrossRefGoogle Scholar
  29. Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ (2015) Contrasting interannual and multidecadal NAO variability. Clim Dyn 45:539–556. doi: 10.1007/s00382-014-2237-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.University of KielKielGermany

Personalised recommendations