Climate Dynamics

, Volume 46, Issue 9–10, pp 3337–3350 | Cite as

Anthropogenic forcing on the Hadley circulation in CMIP5 simulations



Poleward expansion of the Hadley circulation has been an important topic in climate change studies in the past few years, and one of the critically important issues is how it is related to anthropogenic forcings. Using simulations from the coupled model intercomparison projection phase 5 (CMIP5), we study influences of anthropogenic forcings on the width and strength of the Hadley circulation. It is found that significant poleward expansion of the Hadley circulation can be reproduced in CMIP5 historical all-forcing simulations although the magnitude of trends is much weaker than observations. Simulations with individual forcings demonstrate that among three major types of anthropogenic forcings, increasing greenhouse gases (GHGs) and stratospheric ozone depletion all cause poleward expansion of the Hadley circulation, whereas anthropogenic aerosols do not have significant influences on the Hadley circulation. Increasing GHGs cause significant poleward expansion in both hemispheres, with the largest widening of the northern cell in boreal autumn. Stratospheric ozone depletion forces significant poleward expansion of the Hadley circulation for the southern cell in austral spring and summer and for the northern cell in boreal spring. In CMIP5 projection simulations for the twenty-first century, the magnitude of poleward expansion of the Hadley circulation increases with GHG forcing. On the other hand, ozone recovery competes with increasing GHGs in determining the width of the Hadley circulation, especially in austral summer. In both historical and projection simulations, the strength of the Hadley circulation shows significant weakening in winter in both hemispheres.


Hadley circulation Subtropical dry zone Increasing greenhouse gases Ozone depletion and recovery Anthropogenic aerosols 


  1. Allen RJ, Sherwood SC, Norris JR, Zender CS (2012) Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature 485:350–354. doi:10.1038/nature11097 CrossRefGoogle Scholar
  2. Allen RJ, Norris JR, Kovilakam M (2014) Influence of anthropogenic aerosols and the Pacific decadal oscillation on tropical belt width. Nat Geosci 7:270–274. doi:10.1038/NGEO2091 CrossRefGoogle Scholar
  3. Archer CL, Caldeira K (2008) Historical trends in the jet streams. Geophys Res Lett 35:L08803. doi:10.1029/2008gl033614 Google Scholar
  4. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov I, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and Attribution of Climate Change: from Global to Regional. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 867–952Google Scholar
  5. Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Global Biogeochem Cycles 21:1–16. doi:10.1029/2006GB002840 CrossRefGoogle Scholar
  6. Cai W, Cowan T (2013) Southeast Australia autumn rainfall reduction: a climate-change-induced poleward shift of ocean-atmosphere circulation. J Clim 26:189–205. doi:10.1175/JCLI-D-12-00035.1 CrossRefGoogle Scholar
  7. Cai W, Cowan T, Thatcher M (2012) Rainfall reductions over Southern Hemisphere semi-arid regions: the role of subtropical dry zone expansion. Sci Rep. doi:10.1038/srep00702 Google Scholar
  8. Chen G, Held IM (2007) Phase speed spectra and the recent poleward shift of Southern Hemisphere surface westerlies. Geophys Res Lett 34:L21805. doi:10.1029/2007gl031200 CrossRefGoogle Scholar
  9. Cionni I, Eyring V, Lamarque JF, Randel WJ, Stevenson DS, Wu F, Bodeker GE, Shepherd TG, Shindell DT, Waugh DW (2011) Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing. Atmos Chem Phys 11:11267–11292. doi:10.5194/acp-11-11267-2011 CrossRefGoogle Scholar
  10. Davis SM, Rosenlof KH (2012) A multi-diagnostic intercomparison of tropical width time series using reanalyses and satellite observations. J Clim 25:1061–1078. doi:10.1175/JCLI-D-11-00127.1 CrossRefGoogle Scholar
  11. Eyring V, Arblaster JM, Cionni I, Sedláček J, Perlwitz J, Young PJ, Bekki S, Bergmann D, Cameron-Smith P, Collins WJ, Faluvegi G, Gottschaldt K-D, Horowitz LW, Kinnison DE, Lamarque J-F, Marsh DR, Saint-Martin D, Shindell DT, Sudo K, Szopa S, Watanabe S (2013) Long-term ozone changes and associated climate impacts in CMIP5 simulations. J Geophys Res Atmos 118:5029–5060. doi:10.1002/jgrd.50316 CrossRefGoogle Scholar
  12. Frierson DMW, Lu J, Chen G (2007) Width of the Hadley cell in simple and comprehensive general circulation models. Geophys Res Lett 34:L18804. doi:10.1029/2007gl031115 CrossRefGoogle Scholar
  13. Fu Q, Johanson CM, Wallace JM, Reichler T (2006) Enhanced mid-latitude tropospheric warming in satellite measurements. Science 312:1179. doi:10.1126/science.1125566 CrossRefGoogle Scholar
  14. Fu R, Yin L, Li W, Arias PA, Dickinson RE, Huang L, Chakrabortty S, Fernandes K, Liebmann B, Fisher R, Myneni RB (2013) Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc Natl Acad Sci 110:18110–18115. doi:10.1073/pnas.1302584110 CrossRefGoogle Scholar
  15. Gettelman A, Hoor P, Pan LL, Randel WJ, Hegglin MI, Birner T (2011) The extratropical upper troposphere and lower stratosphere. Rev Geophys 49:RG3003. doi:10.1029/2011RG000355
  16. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: Atmosphere and Surface. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 159–254Google Scholar
  17. Hu Y, Fu Q (2007) Observed poleward expansion of the Hadley circulation since 1979. Atmos Chem Phys 7:5229–5236CrossRefGoogle Scholar
  18. Hu Y, Zhou C (2010) Decadal changes in the Hadley circulation. In: Oh JH (ed) Advances in Geosciences, vol 10. World Scientific Publishing Company, Singapore, p 250Google Scholar
  19. Hu Y, Zhou C, Liu J (2011) Observational evidence for poleward expansion of the Hadley circulation. Adv Atmos Sci 28:33–44. doi:10.1007/s00376-010-0032-1 CrossRefGoogle Scholar
  20. Hu Y, Tao L, Liu J (2013) Poleward expansion of the Hadley circulation in CMIP5 simulations. Adv Atmos Sci 30:790–795. doi:10.1007/s00376-012-2187-4 CrossRefGoogle Scholar
  21. Hudson RD (2012) Measurements of the movement of the jet streams at mid-latitudes, in the Northern and Southern Hemispheres, 1979 to 2010. Atmos Chem Phys 12:7797–7808. doi:10.5194/acp-12-7797-2012 CrossRefGoogle Scholar
  22. Hudson RD, Andrade MF, Follette MB, Frolov AD (2006) The total ozone field separated into meteorological regimes—part II: northern Hemisphere mid-latitude total ozone trends. Atmos Chem Phys 6:5183–5191. doi:10.5194/acp-6-5183-2006 CrossRefGoogle Scholar
  23. Johanson CM, Fu Q (2009) Hadley cell widening: model simulations versus observations. J Clim 22:2713–2725. doi:10.1175/2008jcli2620.1 CrossRefGoogle Scholar
  24. Kang SM, Polvani LM, Fyfe JC, Sigmond M (2011) Impact of polar ozone depletion on subtropical precipitation. Science 332:951–954. doi:10.1126/science.1202131 CrossRefGoogle Scholar
  25. Lamarque J-F, Kyle GP, Meinshausen M, Riahi K, Smith SJ, Van Vuuren DP, Conley AJ, Vitt F (2011) Global and regional evolution of short-lived radiatively-active gases and aerosols in the representative concentration pathways. Clim Change 109:191–212. doi:10.1007/s10584-011-0155-0 CrossRefGoogle Scholar
  26. Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006gl028443 Google Scholar
  27. Lu J, Deser C, Reichler T (2009) Cause of the widening of the tropical belt since 1958. Geophys Res Lett 36:L03803. doi:10.1029/2008gl036076 CrossRefGoogle Scholar
  28. Lucas C, Timbal B, Nguyen H (2013) The expanding tropics: a critical assessment of the observational and modeling studies. Wiley Interdiscip Rev Clim Chang. doi:10.1002/wcc.251 Google Scholar
  29. Min S-K, Son S-W (2013) Multimodel attribution of the Southern Hemisphere Hadley cell widening: major role of ozone depletion. J Geophys Res Atmos 118:3007–3015. doi:10.1002/jgrd.50232 CrossRefGoogle Scholar
  30. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, Van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  31. Polvani LM, Previdi M, Deser C (2011a) Large cancellation, due to ozone recovery, of future Southern Hemisphere atmospheric circulation trends. Geophys Res Lett 38:L04707. doi:10.1029/2011GL046712 CrossRefGoogle Scholar
  32. Polvani LM, Waugh DW, Correa GJP, Son S-W (2011b) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24:795–812. doi:10.1175/2010JCLI3772.1 CrossRefGoogle Scholar
  33. Schneider T, Gorman PAO, Levine XJ, O’Gorman PA (2010) Water vapor and the dynamics of climate changes. Rev Geophys 48:RG3001. doi:10.1029/2009rg000302
  34. Seidel DJ, Randel WJ (2007) Recent widening of the tropical belt: evidence from tropopause observations. J Geophys Res 112:D20113. doi:10.1029/2007jd008861 CrossRefGoogle Scholar
  35. Seidel DJ, Fu Q, Randel WJ, Reichler TJ (2008) Widening of the tropical belt in a changing climate. Nat Geosci 1:21–24. doi:10.1038/ngeo.2007.38 Google Scholar
  36. Son S-W, Polvani LM, Waugh DW, Akiyoshi H, Garcia R, Kinnison D, Pawson S, Rozanov E, Shepherd TG, Shibata K (2008) The impact of stratospheric ozone recovery on the Southern Hemisphere westerly jet. Science 320:1486–1489. doi:10.1126/science.1155939 CrossRefGoogle Scholar
  37. Son S-W, Polvani LM, Waugh DW, Birner T, Akiyoshi H, Garcia RR, Gettelman A, Plummer DA, Rozanov E (2009) The impact of stratospheric ozone recovery on tropopause height trends. J Clim 22:429–445. doi:10.1175/2008JCLI2215.1 CrossRefGoogle Scholar
  38. Son S-W, Gerber EP, Perlwitz J, Polvani LM, Gillett NP, Seo K-H, Eyring V, Shepherd TG, Waugh D, Akiyoshi H, Austin J, Baumgaertner A, Bekki S, Braesicke P, Brühl C, Butchart N, Chipperfield MP, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Garcia R, Hardiman SC, Jöckel P, Lamarque JF, Mancini E, Marchand M, Michou M, Nakamura T, Morgenstern O, Pitari G, Plummer DA, Pyle J, Rozanov E, Scinocca JF, Shibata K, Smale D, Teyssèdre H, Tian W, Yamashita Y (2010) Impact of stratospheric ozone on Southern Hemisphere circulation change: A multimodel assessment. J Geophys Res Atmos 115:D00M07. doi:10.1029/2010jd01427
  39. Stachnik JP, Schumacher C (2011) A comparison of the Hadley circulation in modern reanalyses. J Geophys Res 116:D22102. doi:10.1029/2011jd016677 Google Scholar
  40. Sun L, Chen G, Lu J (2013) Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J Atmos Sci 70:2487–2504. doi:10.1175/JAS-D-12-0298.1 CrossRefGoogle Scholar
  41. Tandon NF, Gerber EP, Sobel AH, Polvani LM (2013) Understanding Hadley cell expansion versus contraction: insights from simplified models and implications for recent observations. J Clim 26:4304–4321. doi:10.1175/jcli-d-12-00598.1 CrossRefGoogle Scholar
  42. Taylor GT, Muller-Karger FE, Thunell RC, Scranton MI, Astor Y, Varela R, Ghinaglia LT, Lorenzoni L, Fanning KA, Hameed S, Doherty O (2012a) Ecosystem responses in the southern Caribbean Sea to global climate change. Proc Natl Acad Sci 109:19315–19320. doi:10.1073/pnas.1207514109 CrossRefGoogle Scholar
  43. Taylor KE, Stouffer RJ, Meehl GA (2012b) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/bams-d-11-00094.1 CrossRefGoogle Scholar
  44. Wilcox LJ, Highwood EJ, Dunstone NJ (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ Res Lett 8:024033. doi:10.1088/1748-9326/8/2/024033 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Laboratory for Climate and Ocean-Atmosphere Sciences, Department of Atmospheric and Oceanic Sciences, School of PhysicsPeking UniversityBeijingChina
  2. 2.Department of Atmospheric and Environmental SciencesUniversity at Albany, State University of New YorkAlbanyUSA

Personalised recommendations