Advertisement

Climate Dynamics

, Volume 45, Issue 1–2, pp 83–104 | Cite as

Multispectral analysis of Northern Hemisphere temperature records over the last five millennia

  • C. TariccoEmail author
  • S. Mancuso
  • F. C. Ljungqvist
  • S. Alessio
  • M. Ghil
Article

Abstract

Aiming to describe spatio-temporal climate variability on decadal-to-centennial time scales and longer, we analyzed a data set of 26 proxy records extending back 1,000–5,000 years; all records chosen were calibrated to yield temperatures. The seven irregularly sampled series in the data set were interpolated to a regular grid by optimized methods and then two advanced spectral methods—namely singular-spectrum analysis (SSA) and the continuous wavelet transform—were applied to individual series to separate significant oscillations from the high noise background. This univariate analysis identified several common periods across many of the 26 proxy records: a millennial trend, as well as oscillations of about 100 and 200 years, and a broad peak in the 40–70-year band. To study common NH oscillations, we then applied Multichannel SSA. Temperature variations on time scales longer than 600 years appear in our analysis as a dominant trend component, which shows climate features consistent with the Medieval Warm Period and the Little Ice Age. Statistically significant NH-wide peaks appear at 330, 250 and 110 years, as well as in a broad 50–80-year band. Strong variability centers in several bands are located around the North Atlantic basin and are in phase opposition between Greenland and Western Europe.

Keywords

Space-and-time domain analysis Multi-scale analysis of time series Climatic oscillations Recent paleoclimate  Temperature proxy records Past two millennia Solar forcing 

Notes

Acknowledgments

It is a pleasure to thank two anonymous reviewers for detailed and constructive comments. MG acknowledges support from U.S. National Science Foundation grants DMS-1049253 and OCE-1243175, and U.S. Department of Energy grant DE-SC0006694.

References

  1. Allen MR, Robertson AW (1996) Distinguishing modulated oscillations from coloured noise in multivariate data sets. Clim Dyn 12:775–784Google Scholar
  2. Allen MR, Smith LA (1996) Monte Carlo SSA: Detecting irregular oscillations in the presence of coloured noise. J Clim 9:3373–3404Google Scholar
  3. Alley RB (2000) The Younger Dryas cold intervals as viewed from central Greenland. Quat Sci Rev 19:213–226Google Scholar
  4. Andersson C, Pausata FSR, Jansen E, Risebrobakken B, Telford RJ (2010) Holocene trends in the foraminifer record from the Norwegian Sea and the North Atlantic Ocean. Clim Past 6:179–193Google Scholar
  5. Breitenmoser P, Beer J, Brönnimann S, Frank D, Steinhilber F, Wanner H (2012) Solar and volcanic fingerprints in tree-ring chronologies over the past 2000 years. Palaeogeogr Palaeoclimatol Palaeoecol 313–314:127–139Google Scholar
  6. Briffa KR, Osborn TJ, Schweingruber FH, Jones PD, Shiyatov SG, Vaganov EA (2002) Tree-ring width and density around the Northern Hemisphere: Part 1, local and regional climate signals. Holocene 12:737–775Google Scholar
  7. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Phys D 20:217–236Google Scholar
  8. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, A.D. 755–2004. J Clim 19:5606–5623Google Scholar
  9. Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Herzig F, Heussner KU, Wanner H, Luterbacher J, Esper J (2011) 2500 years of European climate variability and human susceptibility. Science 331:578–582Google Scholar
  10. Christiansen B, Schmith T, Thejll P (2009) A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness. J Clim 22:951–976Google Scholar
  11. Cook ER, Briffa KR, Meko DM, Graybill DA, Funkhouser G (1995) The ’segment length curse’ in long tree-ring chronology development for palaeoclimatic studies. Holocene 5:229–237Google Scholar
  12. Cook TL, Bradley RS, Stoner JS, Francus P (2009) Five thousand years of sediment transfer in a High Arctic watershed recorded in annually laminated sediments from Lower Murray Lake. Ellesmere Island, Nunavut, Canada. J Paleolimnol 41:77–94Google Scholar
  13. Corona C, Edouard JL, Guibal F, Guiot J, Bernard S, Thomas A, Denelle N (2011) Long-term summer (AD 751–2008) temperature fluctuation in the French Alps based on tree-ring data. Boreas 40:351–366Google Scholar
  14. Cronin TM, Hayo K, Thunell RC, Dwyer GS, Saenger C, Willard DA (2010) The Medieval Climate Anomaly and Little Ice Age in Chesapeake Bay and the North Atlantic Ocean. Palaeogeogr Palaeoclimatol Palaeoecol 297:299–310Google Scholar
  15. Cubasch U, Voss R, Hegerl GC, Wazskewitz J, Crowley TJ (1997) Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim Dyn 13:757–767Google Scholar
  16. D’Arrigo R, Jacoby G, Frank D, Pederson N, Cook E, Buckley B, Nachin B, Mijiddorj R, Dugarjav C (2001) 1738 years of Mongolian temperature variability inferred from tree-ring width chronology of Siberian pine. Geophys Res Lett 28: doi: 10.1029/2000GL011845
  17. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676Google Scholar
  18. Dijkstra HA, Ghil M (2005) Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach. Rev Geophys 43:RG3002. doi: 10.1029/2002RG000122 Google Scholar
  19. Dykoski CA, Edwards RL, Cheng H, Yuan D, Cai Y, Zhang M, Lin Y, Qing J, An Z, Revenaugh J (2005) A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett 233:71–86Google Scholar
  20. Enfield Mestas-Nuñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28:2077–2080Google Scholar
  21. Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U (2012) Orbital forcing of tree-ring data. Nat Clim Chang 2:862–866Google Scholar
  22. Fernández-Donado L, González-Rouco JF, Raible CC, Ammann CM, Barriopedro David, García-Bustamante Elena, Jungclaus JH, Lorenz SJ, Luterbacher J, Phipps SJ, Servonnat J, Swingedouw D, Tett SFB, Wagner S, Yiou P, Zorita E (2013) Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Clim Past 9:393–421Google Scholar
  23. Foufoula-Georgiou E, Kumar P (eds) (1994) Wavelets in geophysics. Academic Press, New YorkGoogle Scholar
  24. Franke J, Frank D, Raible CC, Esper J, Brönnimann S (2013) Spectral biases in tree-ring climate proxies. Nat Clim Chang 3:360–364Google Scholar
  25. Ge Q, Zheng J, Fang X, Man Z, Zhang X, Zhang P, Wang WC (2003) Winter half-year temperature reconstruction for the middle and lower reaches of the Yellow River and Yangtze River, China, during the past 2000 years. Holocene 13:933–940Google Scholar
  26. Ghil M (2001) Hilbert problems for the geosciences in the 21st century. Nonlin Process Geophys 8:211–222Google Scholar
  27. Ghil M, Vautard R (1991) Interdecadal oscillations and the warming trend in global temperature time series. Nature 350:324–327Google Scholar
  28. Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for climatic time series. Rev Geophys 40:3.1–3.41Google Scholar
  29. Ghil M, Zaliapin I, Thompson S (2008) A delay differential model of ENSO variability: parametric instability and the distribution of extremes. Nonlin Process Geophys 15:417–433Google Scholar
  30. Gildor H, Ghil M (2002) Phase relations between climate proxy records: The effect of seasonal precipitation changes. Geophys Res Lett 29:11.1–11.4 (GL013781)Google Scholar
  31. Graumlich LJ (1993) A 1000-yr record of temperature and precipitation in the Sierra Nevada. Quat Res 39:249–255Google Scholar
  32. Gray LJ, Beer J, Geller M, Haigh JD, Lockwood M, Matthes K, Cubasch U, Fleitmann D, Harrison G, Hood L, Luterbacher J, Meehl GA, Shindell D, van Geel B, White W (2010) Solar influences on climate. Rev Geophy 48:RG4001. doi: 10.1029/2009RG000282 Google Scholar
  33. Grudd H (2008) Torneträsk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of North Fennoscandian summers. Clim Dyn 31:843–857Google Scholar
  34. Helama S, Macias Fauria M, Mielikäinen K, Timonen M, Eronen M (2010) Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives. Geol Soc Am Bull 122:1981–1988Google Scholar
  35. Hocke K, Kämpfer N (2009) Gap filling and noise reduction of unevenly sampled data by means of the Lomb-Scargle periodogram. Atmos Chem Phys 9(12):4197–4206Google Scholar
  36. Horne JH, Baliunas SL (1986) A prescription for period analysis of unevenly sampled time series. Astrophys J 302:757–763Google Scholar
  37. Humlum O, Solheim J-K, Stordahl K (2011) Identifying natural contributions to late Holocene climate change. Glob Planet Change 79:145–156Google Scholar
  38. Ji JF, Shen J, Balsam W, Chen J, Liu LW, Liu XQ (2005) Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet Sci Lett 233:61–70Google Scholar
  39. Jiang H, Eiríksson J, Schulz M, Knudsen K-L, Seidenkrantz M-S (2005) Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology 33:73–76Google Scholar
  40. Jiang N, Neelin JD, Ghil M (1995) Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific. Clim Dyn 12:101–112Google Scholar
  41. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J Geophys Res 117:D05127. doi: 10.1029/2011JD017139 Google Scholar
  42. Kalugin IA, Daryin AV, Babich VV (2009) Reconstruction of annual air temperatures for three thousand years in Altai region by lithological and geochemical indicators in Teletskoe Lake sediments. Dokl Earth Sci 426:681–684Google Scholar
  43. Keppenne CL, Ghil M (1993) Adaptive filtering and prediction of noisy multivariate signals: An application to subannual variability in atmospheric angular momentum. Intl J Bifurcation Chaos 3:625–634Google Scholar
  44. Kerr RA (2000) A North Atlantic climate pacemaker for the centuries. Science 288:1984–1986Google Scholar
  45. Kimoto M, Ghil M (1993) Multiple flow regimes in the Northern Hemisphere winter. Part II: Sectorial regimes and preferred transitions. J Atmos Sci 50:2645–2673Google Scholar
  46. Kitagawa H, Matsumoto E (1995) Climatic implications of \(\delta ^{13}\)O variations in a Japanese cedar (Cryptomeria japonica) during the last two millennia. Geophys Res Lett 22:2155–2158Google Scholar
  47. Kobashi T, Kawamura K, Severinghaus JP, Barnola J-M, Nakaegawa T, Vinther BM, Johnsen SJ, Box JE (2011) High variability of Greenland surface temperature over the past 4000 years estimated from trapped air in an ice core. Geophys Res Lett 38:L21501. doi: 10.1029/2011GL049444 Google Scholar
  48. Kobashi T, Shindell DT, Kodera K, Box JE, Nakaegawa T, Kawamura K (2013) On the origin of multidecadal to centennial Greenland temperature anomalies over the past 800 yr. Clim Past 9:583–596. doi: 10.5194/cp-9-583-2013 Google Scholar
  49. Larsen DJ, Miller GH, Geirsdóttir Á (2013) Asynchronous Little Ice Age glacier fluctuations in Iceland and European Alps linked to shifts in subpolar North Atlantic circulation. Earth Planet Sci Lett 380:52–59Google Scholar
  50. Lim J, Matsumoto E, Kitagawa H (2005) Eolian quartz flux variations in Cheju Island, Korea, during the last 6500 yr and a possible Sun-monsoon linkage. Quat Res 64:12–20Google Scholar
  51. Lindholm M, Jalkanen R, Salminen H, Aalto T, Ogurtsov M (2011) The height-increment record of summer temperature extended over the last millennium in Fennoscandia. Holocene 21:319–326Google Scholar
  52. Lindholm M, Jalkanen R (2012) Subcentury scale variability in height-increment and tree-ring width chronologies of Scots pine since AD 745 in northern Fennoscandia. Holocene 22:571–577Google Scholar
  53. Liu Y, An ZS, Linderholm HW, Chen DL, Song HM, Cai QF, Sun JY, Tian H (2009) Annual temperatures during the last 2485 years in the mid-eastern Tibetan Plateau inferred from tree rings. Sci China Ser D 52:348–359Google Scholar
  54. Liu Y, Cai QF, Song HM, An ZS, Linderholm HW (2011) Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chin Sci Bull 6:2986–2994Google Scholar
  55. Ljungqvist FC, Krusic PJ, Brattström G, Sundqvist HS (2012) Northern Hemisphere temperature patterns in the last 12 centuries. Clim Past 8:227–249Google Scholar
  56. Lomb NR (1976) Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci 39:447–462Google Scholar
  57. Loso MG (2009) Summer temperatures during the Medieval Warm Period and Little Ice Age inferred from varved proglacial lake sediments in southern Alaska. J Paleolimnol 41:117–128Google Scholar
  58. Lovejoy S, Schertzer D (2012) Stochastic and scaling climate sensitivities: Solar, volcanic and orbital forcings. Geophys Res Lett 39:L11702. doi: 10.1029/2012GL051871 Google Scholar
  59. MacDonald GJ (1989) Spectral analysis of time series generated by nonlinear processes. Rev Geophys 27:449–469Google Scholar
  60. Mangini A, Spötl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past 2000 yr from a \(\delta ^{18}\)O stalagmite record. Earth Planet Sci Lett 235:741–751Google Scholar
  61. Mann ME, Lees JM (1996) Robust estimation of background noise and signal detection in climatic time series. Clim Change 33:409–445Google Scholar
  62. Mann ME, Zhang Z, Rutherford S, Bradley RS, Hughes MK, Shindell D, Ammann C, Faluvegi G, Ni F (2009) Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326:1256–1260Google Scholar
  63. Marcus SL, Ghil M, Ide K (1999) Models of solar irradiance variability and the instrumental temperature record. Geophys Res Lett 26:1449–1452Google Scholar
  64. Martín-Chivelet J, Muñoz-García MB, Edwards RL, Turrero MJ, Ortega AI (2011) Land surface temperature changes in Northern Iberia since 4000 yr BP, based on \(\delta ^{13}\)C of speleothems. Glob Planet Change 77:1–12Google Scholar
  65. Masson-Delmotte V, Schulz M, Abe-Ouchi A, Beer J, Ganopolski A, González-Rouco JF, Jansen E, Lambeck K, Luterbacher J, Naish T, Osborn T, Otto-Bliesner B, Quinn T, Ramesh T, Rojas M, Shao X, Timmermann A (2013) Information from Paleoclimate Archives. In: Stocker, TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change (2013): The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  66. McKay NP, Kaufman DS, Michelutti N (2008) Biogenic silica concentration as a high-resolution, quantitative temperature proxy at Hallet Lake, south-central Alaska. Geophys Res Lett 35:L05709. doi: 10.1029/2007GL032876 Google Scholar
  67. Moberg A (2013) Comparisons of simulated and observed Northern Hemisphere temperature variations during the past millennium. Selected lessons learned and problems encountered. Tellus B 65:19921. doi: 10.3402/tellusb.v65i0.19921 Google Scholar
  68. Moore JJ, Hughen KA, Miller GH, Overpeck JT (2001) Little Ice Age recorded in summer temperature reconstruction from varved sediments of Donard Lake, Baffin Island, Canada. J Paleolimnol 25:503–517Google Scholar
  69. Moron V, Vautard R, Ghil M (1998) Trends, interdecadal and interannual oscillations in global sea-surface temperatures. Clim Dyn 14:545–569Google Scholar
  70. Percival DB, Walden AT (2000) Wavelet methods for time series analysis. Cambridge University Press, CambridgeGoogle Scholar
  71. Naurzbaev MM, Vaganov EA, Sidorova OV, Schweingruber FH (2002) Summer temperatures in eastern Taimyr inferred from a 2427-year late-Holocene tree-ring chronology and earlier floating series. Holocene 12:727–736Google Scholar
  72. Ogurtsov M, Sonninen E, Hilasvuori E et al (2010) Variations in tree ring stable isotope records from northern Finland and their possible connection to solar activity. J Atmos Sol Terr Phy 73:383–387Google Scholar
  73. Ogurtsov M, Lindholm M, Jalkanen R, Veretenenko SV (2013) New evidence of solar variation in temperature proxies from Northern Fennoscandia. Adv Space Res 52:1647–1654Google Scholar
  74. PAGES 2k Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346Google Scholar
  75. Plaut G, Vautard R (1994) Spells of low-frequency oscillations and weather regimes in the Northern hemisphere. J Atmos Sci 51:210–236Google Scholar
  76. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  77. Press WH, Rybicki GB (1989) Fast algorithm for spectral analysis of unevenly sampled data. ApJ 338:277–280Google Scholar
  78. Raspopov OM, Dergachevb VA, Kolström T (2004) Periodicity of climate conditions and solar variability derived from dendrochronological and other palaeo-climatic data in high latitudes. Palaeogeogr Palaeoclimatol Palaeoecol 209:127–139Google Scholar
  79. Raspopov OM, Dergachev VA, Esper J et al (2008) The influence of the de Vries (\(\sim\)200-year) solar cycle on climate variations: Results from the central Asian Mountains and their global link. Palaeogeorg Palaeoclimatol Palaeoecol 259:6–16Google Scholar
  80. Salzer MW, Kipfmueller KF (2005) Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, USA. Clim Change 70:465–487Google Scholar
  81. Scargle JD (1982) Studies in astronomical time series analysis. II. Statistical aspects of unevenly spaced data. ApJ 263:835–853Google Scholar
  82. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726Google Scholar
  83. Shabalova MV, Weber SL (1998) Seasonality of low-frequency variability in early instrumental European temperatures. Geoph Res Lett 25:3859–3862Google Scholar
  84. Shabalova MV, Weber SL (1999) Patterns of temperature variability on multidecadal to centennial timescales. J Geophys Res 104:31023–31041Google Scholar
  85. Sicre M-A, Jacob J, Ezat U, Rousse S, Kissel C, Yiou P, Eiríksson J, Knudsen KL, Jansen E, Turon J-L (2008) Decadal variability of sea surface temperatures off North Iceland over the last 2000 years. Earth Planet Sci Lett 268:137–142Google Scholar
  86. Sicre MA, Hall IR, Mignot J, Khodri M, Ezat U, Truong M-X, Eiríksson J, Knudsen K-L (2011) Sea surface temperature variability in the subpolar Atlantic over the last two millennia. Paleoceanography 26:PA4218. doi: 10.1029/2011PA002169 Google Scholar
  87. Siscoe GL (1978) Solarterrestrial influences on weather and climate. Nature 276:348–352Google Scholar
  88. Sleptsov AM, Klimenko VV (2003) Multi-proxy reconstruction of the climate of Eastern Europe during the last 2,000 years. Izvestya Russ Geograph Soc 6:45–54 [in Russian]Google Scholar
  89. Springer GS, Rowe HD, Hardt B, Edwards RL, Cheng H (2008) Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America. Geophys Res Lett 35:L17703. doi: 10.1029/2008GL034971 Google Scholar
  90. Steinhilber F, Abreu JA, Beer J, Brunner I, Christl M, Fischer H, Heikkilä U, Kubik W, Mann M, McCracken KG, Miller H, Miyahara H, Oerter H, Wilhelms F: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. Proc Natl Acad Sci 109:5967–5971Google Scholar
  91. Støve B, Ljungqvist FC, Thejll P (2012) A test for nonlinearity in temperature proxy records. J Clim 25:7173–7186Google Scholar
  92. Sutton RT, Hodson DL (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309:115–118Google Scholar
  93. Tan M, Liu TS, Hou J, Qin X, Zhang H, Li T (2003) Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys Res Lett 30:1617–1620. doi: 10.1029/2003GL017352 Google Scholar
  94. Tingley MP, Craigmile PF, Haran M, Li B, Mannshardt E, Rajaratnam B (2012) Piecing together the past: statistical insights into paleoclimatic reconstructions. Quat Sci Rev 35:1–22Google Scholar
  95. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79:61–78Google Scholar
  96. Unal YS, Ghil M (1995) Interannual and interdecadal oscillation patterns in sea level. Clim Dyn 11:255–278Google Scholar
  97. Van Loon H, Rogers JC (1978) The seesaw in winter temperatures between Greenland and northern Europe, Part I: General description. Mon Wea Rev 106:296–310Google Scholar
  98. Vautard R, Yiou P, Ghil M (1992) Singular spectrum analysis: a toolkit for short noisy chaotic signals. Phys D 58:95–126Google Scholar
  99. Vautard R, Ghil M (1989) Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys D 35:395–424Google Scholar
  100. Velasco VM, Mendoza B (2008) Assessing the relationship between solar activity and some large scale climatic phenomena. Adv Space Res 42:866–878Google Scholar
  101. Venegas SA (2001) Statistical methods for signal detection in climate. Technical Report,Danish Center for Earth System Science, DCESS Report No. 2Google Scholar
  102. Yang B, Braeuning A, Johnson KR, Yafeng S (2002) General characteristics of temperature variation in China during the last two millennia. Geophys Res Lett 29:1324. doi: 10.1029/2001GL014485 Google Scholar
  103. Yu Z, Ito E (1999) Possible solar forcing of century scale drought frequency in the northern Great Plains. Geology 27:263–266Google Scholar
  104. Wagner G, Beer J, Masarik J et al (2001) Presence of the solar de Vries cycle (\(\sim\)205 years) during the last ice age. Geophys Res Lett 28:303–306Google Scholar
  105. Wang J, Yang B, Ljungqvist FC, Zhao Y (2013) The relationship between the Atlantic Multidecadal Oscillation and temperature variability in China during the last millennium. J Quat Sci 28:653–658Google Scholar
  106. Wanner H, Beer J, Bütikofer J, Crowley T, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller S, Pentice C, Solomina O, Stocker T, Tarasov P, Wagner M, Widmann M (2008) Mid to late Holocene climate change: an overview. Quat Sci Rev 27:1791–1828Google Scholar
  107. Weare BC, Nasstrom JN (1982) Examples of extended empyrical orthogonal function analyses. Mon Wea Rev 110:481–485Google Scholar
  108. Wiles GC, D’Arrigo RD, Villalba R, Calkin PE, Barclay DJ (2004) Century-scale solar variability and Alaskan temperature change over the past millennium. Geophys Res Lett 31:L15203. doi: 10.1029/2004GL020050 Google Scholar
  109. Willard DA, Bernhardt CE, Korejwo DA, Meyers SR (2005) Impact of millennial-scale Holocene climate variability on eastern North American terrestrial ecosystems: pollen-based climatic reconstruction. Glob Planet Change 47:17–35Google Scholar
  110. Wilson R, Wiles G, D’Arrigo R, Zweck C (2007) Cycles and shifts: 1,300 years of multi-decadal temperature variability in the Gulf of Alaska. Clim Dyn 28:425–440Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • C. Taricco
    • 1
    • 2
    Email author
  • S. Mancuso
    • 2
  • F. C. Ljungqvist
    • 3
    • 4
  • S. Alessio
    • 1
    • 2
  • M. Ghil
    • 5
    • 6
  1. 1.Dipartimento di FisicaUniversità di TorinoTurinItaly
  2. 2.INAF – Osservatorio Astrofisico di TorinoPino TorineseItaly
  3. 3.Department of HistoryStockholm UniversityStockholmSweden
  4. 4.Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
  5. 5.Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and IPSL)École Normale SupérieureParisFrance
  6. 6.Department of Atmospheric and Oceanic Sciences and Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaLos AngelesUSA

Personalised recommendations