Climate Dynamics

, Volume 42, Issue 9–10, pp 2469–2475 | Cite as

Central antarctic climate response to the solar cycle

Article

Abstract

Antarctic “Vostok” station works most closely to the center of the ice cap among permanent year-around stations. Climate conditions are exclusively stable: low precipitation level, cloudiness and wind velocity. These conditions can be considered as an ideal model laboratory to study the surface temperature response on solar irradiance variability during 11-year cycle of solar activity. Here we solve an inverse heat conductivity problem: calculate the boundary heat flux density (HFD) from known evolution of temperature. Using meteorological temperature record during (1958–2011) we calculated the HFD variation about 0.2–0.3 W/m2 in phase with solar activity cycle. This HFD variation is derived from 0.5 to 1 °C temperature variation and shows relatively high climate sensitivity per 0.1 % of solar radiation change. This effect can be due to the polar amplification phenomenon, which predicts a similar response 0.3–0.8 °C/0.1 % (Gal-Chen and Schneider in Tellus 28:108–121, 1975). The solar forcing (TSI) is disturbed by volcanic forcing (VF), so that their linear combination TSI + 0.5VF empirically provides higher correlation with HFD (r = 0.63 ± 0.22) than TSI (r = 0.50 ± 0.24) and VF (r = 0.41 ± 0.25) separately. TSI shows higher wavelet coherence and phase agreement with HFD than VF.

Keywords

Solar cycle Antarctic climate IHCP 

References

  1. Beck JV, St Clair CR, Blackwell B (1985) Inverse heat conduction. Wiley, New YorkGoogle Scholar
  2. Beltrami H (2002) Climate from borehole data: energy fluxes and temperatures since 1500. Geophys Res Lett 29(23):2111CrossRefGoogle Scholar
  3. Beltrami H, Smerdon JE, Pollack HN, Huang S (2002) Continental heat gain in the global climate system. Geophys Res Lett 29(8):1167CrossRefGoogle Scholar
  4. Budyko MI (1968) The effect of solar radiation variations on the climate of the Earth. Tellus 21:611–619CrossRefGoogle Scholar
  5. Chen B, Zhang R, Sun S, Bian L, Xiao C, Zhang T (2010) A one-dimensional heat transfer model of the Antarctic Ice Sheet and modeling of snow temperatures at Dome A, the summit of Antarctic Plateau. Sci China Earth Sci 53(5):763–772CrossRefGoogle Scholar
  6. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  7. Eichler A, Olivier S, Henderson K, Laube A, Beer J, Papina T, Gäggeler HW, Schwikowski M (2009) Temperature response in the Altai region lags solar forcing. Geophys Res Lett 36:L01808. doi:10.1029/2008GL035930 Google Scholar
  8. Foukal P, Fröhlich C, Spruit H, Wigley TML (2006) Variations in solar luminosity and their effect on the Earth’s climate. Nature 443:161–166CrossRefGoogle Scholar
  9. Frohlich C (2007) Solar irradiance variability since 1978. Solar Variability and Planetary Climates, 53–65Google Scholar
  10. Frolich C, Lean J (1998) The Sun’s total irradiance: cycles, trends and related climate change uncertainties since 1976. Geophys Res Lett 25:4377CrossRefGoogle Scholar
  11. Gal-Chen T, Schneider SH (1975) Energy balance climate modeling: comparison of radiative and dynamic feedback mechanisms. Tellus 28:108–121CrossRefGoogle Scholar
  12. Gregory JM, Forster PM (2008) Transient climate response estimated from radiative forcing and observed temperature change. J Geophys Res, 113(D23)Google Scholar
  13. Gregory JM, Ingram WJ, Palmer MA, Jones GS, Stott PA, Thorpe RB, Lowe JA, Johns TC, Williams KD (2004) A new method for diagnosing radiative forcing and climate sensitivity. Geophys Res Lett 31:L03205. doi:10.1029/2003GL018747 Google Scholar
  14. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11(5/6):561–566CrossRefGoogle Scholar
  15. Karlsson KG, Riihelä A, Müller R, Meirink JF, Sedlar J, Stengel M, Wolters E (2013) CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data. Atmos Chem Phys 13(10):5351–5367CrossRefGoogle Scholar
  16. Kiehl JT (2007) Twentieth century climate model response and climate sensitivity. Geophys Res Lett 34:L22710. doi:10.1029/2007GL031383 CrossRefGoogle Scholar
  17. Knutti R, Krahenmann S, Frame DJ, Allen MR (2008) Comment on “Heat capacity, time constant, and sensitivity of Earth’s climate system” by S. E. Schwartz. J Geophys Res 113:D15103. doi:10.1029/2007JD009473 CrossRefGoogle Scholar
  18. Langen PL, Alexeev VA (2007) Polar amplification as a preferred response in an idealized aquaplanet GCM. Clim Dyn 29:305–317. doi:10.1007/s00382-006-0221-x CrossRefGoogle Scholar
  19. Lean J, Beer J, Bradley R (1995) Reconstruction of solar irradiance since 1610: implications for climate change. Geophys Res Lett 22(23):3195–3198CrossRefGoogle Scholar
  20. Sato M, Hansen JE, McCormick MP, Pollack JB (1993) Stratospheric aerosol optical depth, 1850–1990. J Geophys Res 98:22987–22994CrossRefGoogle Scholar
  21. Scafetta N, West BJ (2007) Phenomenological reconstructions of the solar signature in the Northern Hemisphere surface temperature records since 1600. J Geophys Res 112(D24):D24S03Google Scholar
  22. Scafetta N, Willson RC (2009) ACRIM-gap and TSI trend issue resolved using a surface magnetic flux TSI proxy model. Geophys Res Lett 36:L05701. doi:10.1029/2008GL036307 CrossRefGoogle Scholar
  23. Schneider EK, Kirtman BP, Lindzen RS (1999) Tropospheric water vapor and climate sensitivity. J Atmos Sci 56:1649–1658CrossRefGoogle Scholar
  24. Schwartz SE (2007) Heat capacity, time constant, and sensitivity of Earth’s climate system. J Geophys Res 112:D24S05. doi:10.1029/2007JD008746 Google Scholar
  25. Sirocko F, Brunck H, Pfahl S (2012) Solar influence on winter severity in central Europe. Geophys Res Lett 39(16):L16704Google Scholar
  26. Solanki SK, Fligge M (1999) A reconstruction of total solar irradiance since 1700. Geophys Res Lett 26(16):2465–2468CrossRefGoogle Scholar
  27. Stevens MJ, North GR (1996) Detection of the climate response to the solar cycle. J Atmos Sci 53:2594–2608CrossRefGoogle Scholar
  28. Stone PH (1978) Constraints on dynamical transports of energy on a spherical planet. Dyn Atmos Oceans 2(2):123–139CrossRefGoogle Scholar
  29. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14(16):3433–3443CrossRefGoogle Scholar
  30. Volobuev D (2006) “TOY” dynamo to describe the long-term solar activity cycles. Sol Phys 238(2):421–430CrossRefGoogle Scholar
  31. Volobuev DM (2009) The shape of the sunspot cycle: a one-parameter fit. Sol Phys 258(2):319–330CrossRefGoogle Scholar
  32. Wang YM, Lean JL, Sheeley NR Jr (2005) Modeling the Sun’s magnetic field and irradiance since 1713. Astrophys J 625(1):522CrossRefGoogle Scholar
  33. Wilson RC, Mordvinor AV (2003) Secular total solar irradiance trend during solar cycles 21–23. Geophys Res Lett 30:1199CrossRefGoogle Scholar
  34. Zhou J, Tung KK (2010) Solar cycles in 150 years of global sea surface temperature data. J Clim 23(12):3234–3248CrossRefGoogle Scholar
  35. Zhu J, Kamachi M, Wang D (2002) Estimation of air-sea heat flux from ocean measurements: an ill-posed problem. J Geophys Res 107(C10):3159CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Pulkovo ObservatorySaint PetersburgRussia

Personalised recommendations