Advertisement

Chiari malformation and atlantoaxial instability: problems of co-existence

  • Sandip ChatterjeeEmail author
  • Pankaj Shivhare
  • Shyam Gopal Verma
Special Annual Issue
  • 17 Downloads

Abstract

Background

Association of Chiari malformation and atlantoaxial subluxation varies. There is a complex relationship between the two, bony and soft tissue pathologies.

Methods

This is a review of various articles available from the literature on the management of Chiari and its association with atlantoaxial instability.

Results

We have an experience of operating on 86 cases of paediatric atlantoaxial subluxation, of which 12 had Chiari malformation diagnosed preoperatively (13.95%). Of the 76 children with Chiari malformations operated on by us, 11 had associated atlantoaxial subluxation diagnosed on imaging (14.47%).

Conclusions

Re-alignment and reduction with fixation may be effective in achieving decompression in cases where reduction is possible from posterior approach. In these cases, posterior fixation is all that is required. If reduction is not possible from posterior and there is “fixed” ventral compression, anterior decompression needs to be combined with posterior fixation. In most cases, direct posterior decompression is warranted.

Keywords

Chiari AAD Instrumentation Decompression Fixation 

Notes

Compliance with ethical standards

Conflict of interest

None.

References

  1. 1.
    Levy WJ, Mason L, Hahn JF (1983) Chiari malformation presenting in adults: a surgical experience in 127 cases. Neurosurgery 12:377–390CrossRefGoogle Scholar
  2. 2.
    Dyste GN, Menezes AH, VanGilder JC (1989) Symptomatic Chiari malformations. J Neurosurg 71:159–168CrossRefGoogle Scholar
  3. 3.
    Menezes AH (1995) Primary craniovertebral anomalies and the hindbrain herniation syndrome (Chiari I): data base analysis. Pediatr Neurosurg 23:260–269CrossRefGoogle Scholar
  4. 4.
    Milhorat TH, Chou MW, Trinidad EM et al (1999) Chiari I malformation redefined: clinical and radiographic findings for 364 symptomatic patients. Neurosurgery 44:1005–1017CrossRefGoogle Scholar
  5. 5.
    Menezes AH, Greenlee JDW, Donovan KA (2005) Honored guest presentation: lifetime experiences and where we are going: Chiari I with syringohydromyelia--controversies and development of decision trees. Clin Neurosurg 52:297–305Google Scholar
  6. 6.
    Caetano de Barros M, Farias W, Ataíde L, Lins S (1968) Basilar impression and Arnold-Chiari malformation. A study of 66 cases. J Neurol Neurosurg Psychiatry 31:596–605CrossRefGoogle Scholar
  7. 7.
    Pang D, Thompson DNP (2011) Embryology and bony malformations of the craniovertebral junction. Childs Nerv Syst 27:523–564CrossRefGoogle Scholar
  8. 8.
    van Gilder JCMA (1983) Craniovertebral junction abnormalities. Clin Neurosurg 30:514–530CrossRefGoogle Scholar
  9. 9.
    Asakawa H, Yanaka K, Narushima K et al (1999) Anomaly of the axis causing cervical myelopathy. J Neurosurg Spine 91:121–123CrossRefGoogle Scholar
  10. 10.
    Behari S, Kiran Kumar MV, Banerji D et al (2004) Case report atlantoaxial dislocation associated with the maldevelopment of the posterior neural arch of axis causing compressive myelopathy. Neurol India 52(4):489Google Scholar
  11. 11.
    Lufkin T, Mark M, Hart CP et al (1992) Homeotic transformation of the occipital bones of the skull by ectopic expression of a homeobox gene. Nature 359:835–841CrossRefGoogle Scholar
  12. 12.
    Condie BG, Capecchi MR (1993) Mice homozygous for a targeted disruption of Hoxd-3 (Hox-4.1) exhibit anterior transformations of the first and second cervical vertebrae, the atlas and the axis. Development 119:579–595Google Scholar
  13. 13.
    Dietrich S, Kessel M (1997) The vertebral column. In: Thorogood P (ed) Embryos, genes and birth defects. Wiley, Chichester, pp 281–30214Google Scholar
  14. 14.
    Menezes AH (2008) Craniocervical developmental anatomy and its implications. Childs Nerv Syst 24:1109–1122CrossRefGoogle Scholar
  15. 15.
    Chisaka O, Capecchi MR (1991) Regionally restricted developmental defects resulting from targeted disruption of the mouse homeobox gene hox-1.5. Nature 350:473–479CrossRefGoogle Scholar
  16. 16.
    Kessel M (1993) Reversal of axonal pathways from rhombomere 3 correlates with extra hox expression domains. Neuron 10:379–393CrossRefGoogle Scholar
  17. 17.
    Koseki H, Wallin J, Wilting J, Mizutani Y, Kispert A, Ebensperger C, Herrmann BG, Christ B, Balling R (1993) A role for Pax-1 as a mediator of notochordal signals during the dorsoventral specification of vertebrae. Development 119:649–660Google Scholar
  18. 18.
    Kimura Y, Matsunami H, Inoue T et al (1995) Cadherin-11 expressed in association with mesenchymal morphogenesis in the head, somite, and limb bud of early mouse embryos. Dev Biol 169:347–358CrossRefGoogle Scholar
  19. 19.
    Keynes RJ, Stern CD (1988) Mechanisms of vertebrate segmentation. Development 103:413–429Google Scholar
  20. 20.
    Erdil H, Yildiz N, Cimen M (2003) Congenital fusion of cervical vertebrae and its clinical significance. J Anat Soc India 52:125–127Google Scholar
  21. 21.
    Saraga-Babić M, Saraga M (1993) Role of the notochord in the development of cephalic structures in normal and anencephalic human fetuses. Virchows Arch A Pathol Anat Histopathol 422:161–168CrossRefGoogle Scholar
  22. 22.
    Sakai Y, Meno C, Fujii H et al (2001) The retinoic acid-inactivating enzyme CYP26 is essential for establishing an uneven distribution of retinoic acid along the anterio-posterior axis within the mouse. Genes Dev 15:213–225CrossRefGoogle Scholar
  23. 23.
    Kashyap V, Gudas L, Brenet F et al (2011) Epigenomic reorganization of the clustered Hox genes in embryonic stem cells induced by retinoic acid. J Biol Chem 2(86):3250–3265CrossRefGoogle Scholar
  24. 24.
    Wellik DM, Capecchi MR (2003) Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science (80- ) 301:363–367CrossRefGoogle Scholar
  25. 25.
    Wellik DM (2009) Hox genes and vertebrate axial pattern. Curr Top Dev Biol 88:257–284CrossRefGoogle Scholar
  26. 26.
    Mallo M, Wellik D, Deschamps J (2010) Hox genes and regional patterning of the vertebrate body plan. Dev Biol 344:7–15CrossRefGoogle Scholar
  27. 27.
    McGaughran JM, Oates A, Donnai D et al (2003) Mutations in PAX1 may be associated with Klippel–Feil syndrome. Eur J Hum Genet 11:468–474CrossRefGoogle Scholar
  28. 28.
    Soshnikova N, Dewaele R, Janvier P et al (2013) Duplications of hox gene clusters and the emergence of vertebrates. Dev Biol 378:194–199CrossRefGoogle Scholar
  29. 29.
    Jukkola T, Trokovic R, Maj P et al (2005) Meox1Cre: a mouse line expressing Cre recombinase in somitic mesoderm. Genesis 43:148–153CrossRefGoogle Scholar
  30. 30.
    Abu-Abed S, Dollé P, Metzger D et al (2001) The retinoic acid-metabolizing enzyme, CYP26A1, is essential for normal hindbrain patterning, vertebral identity, and development of posterior structures. Genes Dev 15:226–240CrossRefGoogle Scholar
  31. 31.
    Mardani M, Borujeni MJS, Esfandiary E (2016) Congenital fusion of cervical vertebrae: a review on embryological etiology. Rev Clin Med 3:148–153Google Scholar
  32. 32.
    Chatterjee S (2018) The chicken or the egg - pancervical fusion with atlantoaxial dislocation. Neurol India 66:153CrossRefGoogle Scholar
  33. 33.
    Nishikawa M, Sakamoto H, Hakuba A et al (1997) Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 86:40–47CrossRefGoogle Scholar
  34. 34.
    Moore KL, Persaud TVN, Torchia MG (1998) The developing human : clinically oriented embryology, 6th edn. WB Saunders, Philadelphia, pp 405–426Google Scholar
  35. 35.
    Wackenheim A (1974) Roentgen diagnosis of the craniovertebral region. Springer-Verlag, Berlin, pp 353–379Google Scholar
  36. 36.
    Shapiro R, Robinson F (1976) Anomalies of the craniovertebral border. Am J Roentgenol 127:281–287CrossRefGoogle Scholar
  37. 37.
    Di Lorenzo N, Fortuna A, Guidetti B (1982) Craniovertebral junction malformations. J Neurosurg 57:603–608CrossRefGoogle Scholar
  38. 38.
    Mesiwala AH, Shaffrey CI, Gruss JS, Ellenbogen RG (2001) Atypical hemifacial microsomia associated with Chiari I malformation and syrinx: further evidence indicating that Chiari I malformation is a disorder of the paraaxial mesoderm. J Neurosurg 95:1034–1039CrossRefGoogle Scholar
  39. 39.
    Kagawa M, Jinnai T, Matsumoto Y et al (2006) Chiari I malformation accompanied by assimilation of the atlas, Klippel-Feil syndrome, and syringomyelia: case report. Surg Neurol 65:497–502CrossRefGoogle Scholar
  40. 40.
    Fenoy AJ, Menezes AH, Fenoy KA (2008) Craniocervical junction fusions in patients with hindbrain herniation and syringohydromyelia. J Neurosurg Spine 9:1–9CrossRefGoogle Scholar
  41. 41.
    Goel A (2009) Basilar invagination, Chiari malformation, syringomyelia: a review. Neurol India 57:235CrossRefGoogle Scholar
  42. 42.
    Achawal AGS, Goel SA (1995) The surgical treatment of chiari malformation associated with atlantoaxial dislocation. Br J Neurosurg 9:67–72CrossRefGoogle Scholar
  43. 43.
    Behari S, Kalra SK, Kiran Kumar MV et al (2007) Chiari I malformation associated with atlanto-axial dislocation: focussing on the anterior cervico-medullary compression. Acta Neurochir 149:41–50CrossRefGoogle Scholar
  44. 44.
    Kumar R, Kalra SK, Vaid VK, Mahapatra AK (2008) Chiari I malformation: surgical experience over a decade of management. Br J Neurosurg 22:409–414CrossRefGoogle Scholar
  45. 45.
    Galarza M, Martínez-Lage JF, Ham S, Sood S (2011) Cerebral anomalies and Chiari type 1 malformation. Pediatr Neurosurg 46:442–449CrossRefGoogle Scholar
  46. 46.
    Dlouhy BJ, Policeni BA, Menezes AH (2017) Reduction of atlantoaxial dislocation prevented by pathological position of the transverse ligament in fixed, irreducible os odontoideum: operative illustrations and radiographic correlates in 41 patients. J Neurosurg Spine 27:20–28CrossRefGoogle Scholar
  47. 47.
    Goel A, Gore S, Shah A et al (2018) Atlantoaxial fixation for Chiari 1 formation in pediatric age-group patients: report of treatment in 33 patients. World Neurosurg 111:e668–e677CrossRefGoogle Scholar
  48. 48.
    Goel A (2015) Is atlantoaxial instability the cause of Chiari malformation? Outcome analysis of 65 patients treated by atlantoaxial fixation. J Neurosurg Spine 22:116–127CrossRefGoogle Scholar
  49. 49.
    Goel A (2014) Is Chiari malformation nature’s protective “air-bag” ? Is its presence diagnostic of atlantoaxial instability? J Craniovertebr Junction Spine 5:107–109CrossRefGoogle Scholar
  50. 50.
    Joaquim A, Tedeschi H, Ps C (2019) Controversies in the surgical management of congenital craniocervical junction disorders – a critical review. Neurol India 66:1003Google Scholar
  51. 51.
    Menezes AH (2011) Current opinions for treatment of symptomatic hindbrain herniation or Chiari type I malformation. World Neurosurg 75:226–228CrossRefGoogle Scholar
  52. 52.
    Bollo R, Riva-Cambrin J, … Brockmeyer DL (2012) Complex Chiari malformations in children: an analysis of preoperative risk factors for occipitocervical fusion. Pediatrics 10:134–41Google Scholar
  53. 53.
    Salunke P, Sura S, Futane S et al (2012) Ventral compression in adult patients with Chiari 1 malformation sans basilar invagiantion: cause and management. Acta Neurochir 154:147–152CrossRefGoogle Scholar
  54. 54.
    Rahman A (2015) Letter to the editor: does atlantoaxial dislocation really cause Chiari? J Neurosurg Spine 23:393–394CrossRefGoogle Scholar
  55. 55.
    Menezes AH (2012) Craniovertebral junction abnormalities with hindbrain herniation and syringomyelia: regression of syringomyelia after removal of ventral craniovertebral junction compression. J Neurosurg 116:301–309CrossRefGoogle Scholar
  56. 56.
    Menezes AH, VanGilder JC, Graf CJ, McDonnell DE (1980) Craniocervical abnormalities. A comprehensive surgical approach. J Neurosurg 53:444–455CrossRefGoogle Scholar
  57. 57.
    Müller F, O’Rahilly R (1991) Development of anencephaly and its variants. Am J Anat 190:193–218CrossRefGoogle Scholar
  58. 58.
    Kohno K, Sakaki S, Shiraishi T et al (1990) Successful treatment of adult Arnold-Chiari malformation associated with basilar impression and syringomyelia by the transoral anterior approach. Surg Neurol 33:284–287CrossRefGoogle Scholar
  59. 59.
    Klekamp J (2015) Chiari I malformation with and without basilar invagination: a comparative study. Neurosurg Focus 38:E12CrossRefGoogle Scholar
  60. 60.
    Hwang SW, Heilman CB, Riesenburger RI, Kryzanski J (2008) C1–C2 arthrodesis after transoral odontoidectomy and suboccipital craniectomy for ventral brain stem compression in Chiari I patients. Eur Spine J 17:1211–1217CrossRefGoogle Scholar
  61. 61.
    Jea A (2015) Editorial: Chiari malformation I surgically treated with atlantoaxial fixation. J Neurosurg Spine 22:113–115CrossRefGoogle Scholar
  62. 62.
    Hankinson TC, Klimo P, Feldstein NA et al (2007) Chiari malformations, syringohydromyelia and scoliosis. Neurosurg Clin N Am 18:549–568CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryVIMS and Park ClinicKolkataIndia
  2. 2.Department of NeurosurgeryPark ClinicKolkataIndia

Personalised recommendations