Advertisement

Intraventricular hemorrhage and posthemorrhagic hydrocephalus in preterm infants: diagnosis, classification, and treatment options

  • Paola Valdez Sandoval
  • Paola Hernández Rosales
  • Deyanira Gabriela Quiñones Hernández
  • Eva Alejandra Chavana Naranjo
  • Victor García NavarroEmail author
Review Article

Abstract

Purpose

Intraventricular hemorrhage is the most important adverse neurologic event for preterm and very low weight birth infants in the neonatal period. This pathology can lead to various delays in motor, language, and cognition development. The aim of this article is to give an overview of the knowledge in diagnosis, classification, and treatment options of this pathology.

Method

A systematic review has been made.

Results

The cranial ultrasound can be used to identify the hemorrhage and grade it according to the modified Papile grading system. There is no standardized protocol of intervention as there are controversial results on which of the temporizing neurosurgical procedures is best and about the appropriate parameters to consider a conversion to ventriculoperitoneal shunt. However, it has been established that the most important prognosis factor is the involvement and damage of the white matter.

Conclusion

More evidence is required to create a standardized protocol that can ensure the best possible outcome for these patients.

Keywords

Intraventricular hemorrhage Posthemorrhagic hydrocephalus Ventricular access device Ventriculosubgaleal shunt Ventriculoperitoneal shunt 

Abbreviations

CBF

Cerebral blood flow

CP

Cerebral palsy

CSF

Cerebrospinal fluid

DRIFT

Drainage, irrigation, and fibrinolytic therapy

EVD

External ventricular drainage

GM

Germinal matrix

GMH

Germinal matrix hemorrhage

IVH

Intraventricular hemorrhage

LP

Lumbar puncture

PHH

Posthemorrhagic hydrocephalus

PVHI

Periventricular hemorrhagic infarction

RT-US

Real-time ultrasound

TNPs

Temporizing neurosurgical procedures

VAD

Ventricular access device

VLBW

Very low birth weight

VP

Ventriculoperitoneal

VSG

Ventriculosubgaleal

Notes

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Robinson S (2012) Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr 9:1–23.  https://doi.org/10.1088/1367-2630/15/1/015008.Fluid CrossRefGoogle Scholar
  2. 2.
    Guo J, Chen Q, Tang J, Zhang J, Tao Y, Li L, Zhu G, Feng H, Chen Z (2015) Minocycline-induced attenuation of iron overload and brain injury after experimental germinal matrix hemorrhage. Brain Res 1594:115–124.  https://doi.org/10.1016/j.brainres.2014.10.046 CrossRefGoogle Scholar
  3. 3.
    Ballabh P (2014) Pathogenesis and prevention of intraventricular hemorrhage. Clin Perinatol 41:47–67.  https://doi.org/10.1016/j.clp.2013.09.007 CrossRefGoogle Scholar
  4. 4.
    Kazan S, Güra A, Uçar T, Korkmaz E, Ongun H, Akyuz M (2005) Hydrocephalus after intraventricular hemorrhage in preterm and low-birth weight infants: analysis of associated risk factors for ventriculoperitoneal shunting. Surg Neurol 64:77–81.  https://doi.org/10.1016/j.surneu.2005.07.035 CrossRefGoogle Scholar
  5. 5.
    Ment LR, Oh W, Philip AGS, Ehrenkranz RA, Duncan CC, Allan W, Taylor KJW, Schneider K, Katz KH, Makuch RW (1992) Risk factors for early intraventricular hemorrhage in low birth weight infants. J Pediatr 121:776–783.  https://doi.org/10.1016/S0022-3476(05)81915-8 CrossRefGoogle Scholar
  6. 6.
    Papile LA, Burstein J, Burstein R, Koffler H (1978) Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr 92:529–534.  https://doi.org/10.1016/S0022-3476(78)80282-0 CrossRefGoogle Scholar
  7. 7.
    Whitelaw A, Aquilina K (2012) Management of posthaemorrhagic ventricular dilatation. Arch Dis Child Fetal Neonatal Ed 97:229–234.  https://doi.org/10.1136/adc.2010.190173 CrossRefGoogle Scholar
  8. 8.
    Inder TE, Perlman JM, Volpe JJ (2018) Preterm IVH/posthemorrhagic hydrocephalus. In: Volpe’s neurology of the newborn, 6th edn. Elsevier, pp 637–698Google Scholar
  9. 9.
    Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A (2001) Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Pediatr Res 49:208–212CrossRefGoogle Scholar
  10. 10.
    Poryo M, Boeckh JC, Gortner L, Zemlin M, Duppré P, Ebrahimi-Fakhari D, Wagenpfeil S, Heckmann M, Mildenberger E, Hilgendorff A, Flemmer AW, Frey G, Meyer S, PROGRESS study consortium and NGFN - Nationales Genomforschungsnetz Deutschland (2018) Ante-, peri- and postnatal factors associated with intraventricular hemorrhage in very premature infants. Early Hum Dev 116:1–8.  https://doi.org/10.1016/j.earlhumdev.2017.08.010 CrossRefGoogle Scholar
  11. 11.
    Waitz M, Nusser S, Schmid MB, Dreyhaupt J, Reister F, Hummler H (2016) Risk factors associated with intraventricular hemorrhage in preterm infants with ≤28 weeks gestational age. Klin Padiatr 228:245–250.  https://doi.org/10.1055/s-0042-111689 CrossRefGoogle Scholar
  12. 12.
    McCrea HJ, Ment LR (2008) The diagnosis, management, and postnatal prevention of intraventricular hemorrhage in the preterm neonate. Clin Perinatol 35:777–792.  https://doi.org/10.1016/j.clp.2008.07.014 CrossRefGoogle Scholar
  13. 13.
    Ballabh P (2010) Intraventricular hemorrhage in premature infants: mechanism of disease. Semin Perinatol 67:42–53Google Scholar
  14. 14.
    Szpecht D, Szymankiewicz M, Nowak I, Gadzinowski J (2016) Intraventricular hemorrhage in neonates born before 32 weeks of gestation—retrospective analysis of risk factors. Childs Nerv Syst 32:1399–1404.  https://doi.org/10.1007/s00381-016-3127-x CrossRefGoogle Scholar
  15. 15.
    Bassan H, Eshel R, Golan I, Kohelet D, Ben Sira L, Mandel D, Levi L, Constantini S, Beni-Adani L, External Ventricular Drainage Study Investigators (2012) Timing of external ventricular drainage and neurodevelopmental outcome in preterm infants with posthemorrhagic hydrocephalus. Eur J Paediatr Neurol 16:662–670.  https://doi.org/10.1016/j.ejpn.2012.04.002 CrossRefGoogle Scholar
  16. 16.
    Ballabh P, Xu H, Hu F, Braun A, Smith K, Rivera A, Lou N, Ungvari Z, Goldman SA, Csiszar A, Nedergaard M (2007) Angiogenic inhibition reduces germinal matrix hemorrhage. Nat Med 13:477–485.  https://doi.org/10.1038/nm1558 CrossRefGoogle Scholar
  17. 17.
    Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, Ungvari Z, Csiszar A, Nedergaard M, Ballabh P (2007) Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci 27:12012–12024.  https://doi.org/10.1523/JNEUROSCI.3281-07.2007 CrossRefGoogle Scholar
  18. 18.
    El-Khoury N, Braun A, Hu F et al (2006) Astrocyte end-feet in germinal matrix, cerebral cortex, and white matter in developing infants. Pediatr Res 59:673–679.  https://doi.org/10.1203/01.pdr.0000214975.85311.9c CrossRefGoogle Scholar
  19. 19.
    Semenza GL (2002) Signal transduction to hypoxia-inducible factor 1. Biochem Pharmacol 64:993–998.  https://doi.org/10.1016/s0006-2952(02)01168-1 CrossRefGoogle Scholar
  20. 20.
    Xu H, Hu F, Sado Y, Ninomiya Y, Borza DB, Ungvari Z, LaGamma EF, Csiszar A, Nedergaard M, Ballabh P (2008) Maturational changes in laminin, fibronectin, collagen IV, and perlecan in germinal matrix, cortex, and white matter and effect of betamethasone. J Neurosci Res 86:1482–1500.  https://doi.org/10.1002/jnr.21618 CrossRefGoogle Scholar
  21. 21.
    du Plessis AJ (2008) Cerebrovascular injury in premature infants: current understanding and challenges for future prevention. Clin Perinatol 35:609–641.  https://doi.org/10.1016/j.clp.2008.07.010 CrossRefGoogle Scholar
  22. 22.
    Kaiser JR, Gauss CH, Williams DK (2005) The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants. Pediatr Res 58:931–935.  https://doi.org/10.1203/01.pdr.0000182180.80645.0c CrossRefGoogle Scholar
  23. 23.
    Bada HS, Korones SB, Perry EH, Arheart KL, Ray JD, Pourcyrous M, Magill HL, Runyan W III, Somes GW, Clark FC, Tullis KV (1990) Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J Pediatr 117:607–614CrossRefGoogle Scholar
  24. 24.
    Soul JS, Hammer PE, Tsuji M, Saul JP, Bassan H, Limperopoulos C, Disalvo DN, Moore M, Akins P, Ringer S, Volpe JJ, Trachtenberg F, du Plessis AJ (2007) Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res 61:467–473.  https://doi.org/10.1203/pdr.0b013e31803237f6 CrossRefGoogle Scholar
  25. 25.
    Perlman JM, Goodman S, Kreusser KL, Volpe JJ (1985) Reduction in intraventricular hemorrhage by elimination of fluctuating cerebral blood-flow velocity in preterm infants with respiratory distress syndrome. N Engl J Med 312:1353–1357CrossRefGoogle Scholar
  26. 26.
    Rennie JM, South M, Morley CJ (1987) Cerebral blood flow velocity variability in infants receiving assisted ventilation. Arch Dis Child 62:1247–1251.  https://doi.org/10.1136/adc.62.12.1247 CrossRefGoogle Scholar
  27. 27.
    Fanaroff JM, Fanaroff AA (2012) Blood pressure disorders in the neonate: hypotension and hypertension. Neonatol A Pract Approach to Neonatal Dis:585–592.  https://doi.org/10.1007/978-88-470-1405-3_78
  28. 28.
    Miall-Allen VM, de Vries LS, Whitelaw AG (1987) Mean arterial blood pressure and neonatal cerebral lesions. Arch Dis Child 62:1068–1069.  https://doi.org/10.1542/neo.8-1-e32 CrossRefGoogle Scholar
  29. 29.
    Perlman JM, McMenamin JB, Volpe JJ (1983) Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. Relation to the development of intraventricular hemorrhage. N Engl J Med 309:204–207CrossRefGoogle Scholar
  30. 30.
    Strahle J, Garton HJL, Maher CO, Muraszko KM, Keep RF, Xi G (2012) Mechanisms of hydrocephalus after neonatal and adult intraventricular hemorrhage. Transl Stroke Res 3:25–38.  https://doi.org/10.1007/s12975-012-0182-9 CrossRefGoogle Scholar
  31. 31.
    Oi S, Di Rocco C (2006) Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662–669.  https://doi.org/10.1007/s00381-005-0020-4 CrossRefGoogle Scholar
  32. 32.
    Whitelaw A, Christie S, Pople I (1999) Transforming growth factor-β1: a possible signal molecule for posthemorrhagic hydrocephalus? Pediatr Res 46:576–580CrossRefGoogle Scholar
  33. 33.
    Manaenko A, Lekic T, Barnhart M, Hartman R, Zhang JH (2014) Inhibition of transforming growth factor-p attenuates brain injury and neurological deficits in a rat model of germinal matrix hemorrhage, Departments of Basic Science. Stroke 45:828–834.  https://doi.org/10.1161/STROKEAHA.113.003754 CrossRefGoogle Scholar
  34. 34.
    Lekic T, Klebe D, McBride DW et al (2015) Protease-activated receptor 1 and 4 signal inhibition reduces preterm neonatal hemorrhagic brain injury. Stroke 46:1710–1713.  https://doi.org/10.1161/STROKEAHA.114.007889 CrossRefGoogle Scholar
  35. 35.
    Lekic T, Krafft PR, Klebe D et al (2016) PAR-1, −4, and the mTOR pathway following germinal matrix hemorrhage. Acta Neurochir Suppl 121:3–6.  https://doi.org/10.1007/978-3-319-18497-5 CrossRefGoogle Scholar
  36. 36.
    Strahle JM, Garton T, Bazzi AA, Kilaru H, Garton HJL, Maher CO, Muraszko KM, Keep RF, Xi G (2014) Role of hemoglobin and Iron in hydrocephalus after neonatal intraventricular hemorrhage. Neurosurgery 75:696–705.  https://doi.org/10.1227/NEU.0000000000000524 CrossRefGoogle Scholar
  37. 37.
    Robinson S (2012) Neonatal posthemorrhagic hydrocephalus from prematurity: pathophysiology and current treatment concepts. J Neurosurg Pediatr 9:242–258.  https://doi.org/10.3171/2011.12.PEDS11136 CrossRefGoogle Scholar
  38. 38.
    Levene MI (1981) Measurement of the growth of the lateral ventricles in preterm infants with real-time ultrasound. Arch Dis Child 56:900–904.  https://doi.org/10.1136/adc.56.12.900 CrossRefGoogle Scholar
  39. 39.
    Srinivasakumar P, Limbrick D, Munro R, Mercer D, Rao R, Inder T, Mathur A (2013) Posthemorrhagic ventricular dilatation-impact on early neurodevelopmental outcome. Am J Perinatol 30:207–214.  https://doi.org/10.1055/s-0032-1323581 Google Scholar
  40. 40.
    Jary S, Kmita G, Wroblewska J, Whitelaw A (2012) Quantitative cranial ultrasound prediction of severity of disability in premature infants with post-haemorrhagic ventricular dilatation. Arch Dis Child 97:955–959.  https://doi.org/10.1136/archdischild-2012-301778 CrossRefGoogle Scholar
  41. 41.
    Taylor GA, Madsen JR (1996) Neonatal hydrocephalus : hemodynamic response to fontanelle compression correlation with intracranial pressure and need for shunt placement’ pediatric radiology. Radiology 201:685–689.  https://doi.org/10.1177/875647939701300125 CrossRefGoogle Scholar
  42. 42.
    Klebermass-Schrehof K, Rona Z, Waldhör T, Czaba C, Beke A, Weninger M, Olischar M (2013) Can neurophysiological assessment improve timing of intervention in posthaemorrhagic ventricular dilatation? Arch Dis Child Fetal Neonatal Ed 98:291–298.  https://doi.org/10.1136/archdischild-2012-302323 CrossRefGoogle Scholar
  43. 43.
    Kishimoto J, De Ribaupierre S, Lee DSC et al (2013) 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates. Phys Med Biol 58:7513–7526.  https://doi.org/10.1088/0031-9155/58/21/7513 CrossRefGoogle Scholar
  44. 44.
    Whitelaw A (2001) Postnatal phenobarbitone for the prevention of intraventricular hemorrhage in preterm infants. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD001691
  45. 45.
    Fowlie PW, Davis PG (2010) Cochrane review: prophylactic intravenous indomethacin for preventing mortality and morbidity in preterm infants. Evid Based Child Heal A Cochrane Rev J 5:416–471.  https://doi.org/10.1002/ebch.526 CrossRefGoogle Scholar
  46. 46.
    Whitelaw A, Lee-Kelland R (2017) Repeated lumbar or ventricular punctures in newborns with intraventricular haemorrhage. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD000216.pub2
  47. 47.
    Garton HJL, Piatt JJH (2004) Hydrocephalus. Pediatr Clin N Am 51:305–325.  https://doi.org/10.1016/j.pcl.2003.12.002 CrossRefGoogle Scholar
  48. 48.
    de Vries LS, Leijser LM (2018) Germinal matrix hemorrhage and intraventricular hemorrhage (GMH-IVH) in the newborn: prevention, management, and complication. In: Post TW (ed) UpToDate. UpToDate Inc., Waltham. https://www.uptodate.com. Accessed March 2019
  49. 49.
    Köksal V, Öktem S (2010) Ventriculosubgaleal shunt procedure and its long-term outcomes in premature infants with post-hemorrhagic hydrocephalus. Childs Nerv Syst 26:1505–1515.  https://doi.org/10.1007/s00381-010-1118-x CrossRefGoogle Scholar
  50. 50.
    Lozier AP, Sciacca RR, Romagnoli MF, Connolly ES (2002) Ventriculostomy-related infections> a critical review of the literature. Neurosurgery 51:170–182.  https://doi.org/10.1227/01.NEU.0000017465.78245.6C CrossRefGoogle Scholar
  51. 51.
    Byers K, Kaplan SL, Tunkel AR et al (2016) 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated ventriculitis and meningitis*. Clin Infect Dis 64:e34–e65.  https://doi.org/10.1093/cid/ciw861 Google Scholar
  52. 52.
    Wellons JC, Shannon CN, Kulkarni AV, Simon TD, Riva-Cambrin J, Whitehead WE, Oakes WJ, Drake JM, Luerssen TG, Walker ML, Kestle JRW (2009) A multicenter retrospective comparison of conversion from temporary to permanent cerebrospinal fluid diversion in very low birth weight infants with posthemorrhagic hydrocephalus. J Neurosurg Pediatr 4:50–55.  https://doi.org/10.3171/2009.2.PEDS08400 CrossRefGoogle Scholar
  53. 53.
    Benzel EC, Reeves JP, Nguyen PK, Hadden TA (1993) The treatment of hydrocephalus in preterm infants with intraventricular haemorrhage. Acta Neurochir 122:200–203CrossRefGoogle Scholar
  54. 54.
    Limbrick DD, Mathur A, Johnston JM, Munro R, Sagar J, Inder T, Park TS, Leonard JL, Smyth MD (2010) Neurosurgical treatment of progressive posthemorrhagic ventricular dilation in preterm infants: a 10-year single-institution study. J Neurosurg Pediatr 6:224–230.  https://doi.org/10.3171/2010.5.PEDS1010 CrossRefGoogle Scholar
  55. 55.
    de Vries LS, Liem KD, van Dijk K et al (2002) Early versus late treatment of posthaemorrhagic ventricular dilatation: results of a retrospective study from five neonatal intensive care units in The Netherlands. Acta Paediatr 91:212–217.  https://doi.org/10.3171/2011.12.PEDS11136 CrossRefGoogle Scholar
  56. 56.
    Shooman D, Portess H, Sparrow O (2009) A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants. Cerebrospinal Fluid Res 6:1–15.  https://doi.org/10.1186/1743-8454-6-1 CrossRefGoogle Scholar
  57. 57.
    Kennedy CR, Kennedy C, Campbell M et al (1998) International randomised controlled trial of acetazolamide and furosemide in posthaemorrhagic ventricular dilatation in infancy. Lancet 352:433–440.  https://doi.org/10.1016/S0140-6736(97)12390-X CrossRefGoogle Scholar
  58. 58.
    Mazzola CA, Choudhri AF, Auguste KI, Limbrick DD, Rogido M, Mitchell L, Flannery AM (2014) Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 2: management of posthemorrhagic hydrocephalus in premature infants. J Neurosurg Pediatr 14:8–23.  https://doi.org/10.3171/2014.7.PEDS14322 CrossRefGoogle Scholar
  59. 59.
    Whitelay A, Odd D, Brion LP, Kennedy CR (2007) Intraventricular streptokinas after intraventricular hemorrhage in newborn infants. Cochrane Database Syst Rev 4:CD000498.  https://doi.org/10.1002/14651858.CD000498.pub2 Google Scholar
  60. 60.
    Brown EM (2000) The management of neurosurgical patients with postoperative bacterial or aseptic meningitis or external ventricular drain-associated ventriculitis. Br J Neurosurg 14:7–12Google Scholar
  61. 61.
    Lam HP, Heilman CB (2009) Ventricular access device versus ventriculosubgaleal shunt in post hemorrhagic hydrocephalus associated with prematurity. J Matern Neonatal Med 22:1097–1101.  https://doi.org/10.3109/14767050903029576 CrossRefGoogle Scholar
  62. 62.
    Jian L, Hang-Song S, Zheng-Lang L et al (2012) Implantation of Ommaya reservoir in extremely low weight premature infants with posthemorrhagic hydrocephalus: a cautious option. Childs Nerv Syst 28:1687–1691.  https://doi.org/10.1007/s00381-012-1847-0 CrossRefGoogle Scholar
  63. 63.
    Rizvi SAA, Wood M (2011) Ventriculosubgaleal shunting for post-haemorrhagic hydrocephalus in premature neonates. Pediatr Neurosurg 46:335–339.  https://doi.org/10.1159/000320135 CrossRefGoogle Scholar
  64. 64.
    Badhiwala JH, Hong CJ, Nassiri F, Hong BY, Riva-Cambrin J, Kulkarni AV (2015) Treatment of posthemorrhagic ventricular dilation in preterm infants: a systematic review and meta-analysis of outcomes and complications. J Neurosurg Pediatr 16:545–555Google Scholar
  65. 65.
    Tenbrock K, Kribs A, Roth B (2003) Hyponatraemia as a consequence of serial liquor punctures in preterm infants with a ventricular access device after posthaemorrhagic hydrocephalus. Arch Dis Child Fetal Neonatal Ed 88:F359.  https://doi.org/10.1136/fn.88.4.F349 CrossRefGoogle Scholar
  66. 66.
    Macmahon P, Cooke RWI (1983) Hyponatraemia caused by repeated cerebrospinal fluid drainage in post haemorrhagic hydrocephalus. Arch Dis Child 58:385–386.  https://doi.org/10.1136/adc.58.5.385 CrossRefGoogle Scholar
  67. 67.
    Whitelaw A, Pople I, Cherian S, Evans D (2003) Phase 1 trial of prevention of hydrocephalus after intraventricular hemorrhage in newborn infants by drainage, irrigation, and fibrinolytic therapy. Pediatrics 111:759–766CrossRefGoogle Scholar
  68. 68.
    Whitelaw A, Jary S, Kmita G, Wroblewska J, Musialik-Swietlinska E, Mandera M, Hunt L, Carter M, Pople I (2010) Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics 125:e852–e858.  https://doi.org/10.1542/peds.2009-1960 CrossRefGoogle Scholar
  69. 69.
    Etus V, Kahilogullari G, Karabagli H, Unlu A (2018) Early endoscopic ventricular irrigation for the treatment of neonatal posthemorrhagic hydrocephalus: a feasible treatment option or not? A multicenter study. Turk Neurosurg 28:137–141.  https://doi.org/10.5137/1019-5149.JTN.18677-16.0 Google Scholar
  70. 70.
    Schulz M, Bührer C, Pohl-Schickinger A, Haberl H, Thomale UW (2014) Neuroendoscopic lavage for the treatment of intraventricular hemorrhage and hydrocephalus in neonates. J Neurosurg Pediatr 13:626–635.  https://doi.org/10.3171/2014.2.PEDS13397 CrossRefGoogle Scholar
  71. 71.
    Fani L, De Jong THR, Dammers R, Van Veelen MLC (2013) Endoscopic third ventriculocisternostomy in hydrocephalic children under 2 years of age: appropriate or not? A single-center retrospective cohort study. Childs Nerv Syst 29:419–423.  https://doi.org/10.1007/s00381-012-1961-z CrossRefGoogle Scholar
  72. 72.
    Horinek D, Cihar M, Tichy M (2003) Current methods in the treatment of posthemorrhagic hydrocephalus in infants. Bratisl Lek List 104(11):347–351Google Scholar
  73. 73.
    Reinprecht A, Dietrich W, Berger A, Bavinzski G, Weninger M, Czech T (2001) Posthemorrhagic hydrocephalus in preterm infants: long-term follow-up and shunt-related complications. Childs Nerv Syst 17:663–669.  https://doi.org/10.1007/s00381-001-0519-2 CrossRefGoogle Scholar
  74. 74.
    Pulido-Rivas P, Martínez-Sarriés F, Ochoa M, Soía R (2007) Treatment of hydrocephalus secondary to intraventricular haemorrhage in preterm infants. A review of the literature. Rev Neurol 44:616–624Google Scholar
  75. 75.
    Leonard JR, Limbrick DD (2014) Intraventricular hemorrhage and posthemorrhagic hydrocephalus. In: Principles and practice of pediatric neurosurgery, 3rd edn. Thieme Medical Publishers, New York, pp 137–145Google Scholar
  76. 76.
    Fulkerson DH, Vachhrajani S, Bohnstedt BN, Patel NB, Patel AJ, Fox BD, Jea A, Boaz JC (2011) Analysis of the risk of shunt failure or infection related to cerebrospinal fluid cell count, protein level, and glucose levels in low-birth-weight premature infants with posthemorrhagic hydrocephalus. J Neurosurg Pediatr 7:147–151.  https://doi.org/10.3171/2010.11.PEDS10244 CrossRefGoogle Scholar
  77. 77.
    Heep A, Engelskirchen R, Holschneider A, Groneck P (2001) Primary intervention for posthemorrhagic hydrocephalus in very low birthweight infants by ventriculostomy. Childs Nerv Syst 17:47–51.  https://doi.org/10.1007/s003810000363 CrossRefGoogle Scholar
  78. 78.
    Brouwer A, Groenendaal F, van Haastert I-L, Rademaker K, Hanlo P, de Vries L (2008) Neurodevelopmental outcome of preterm infants with severe intraventricular hemorrhage and therapy for post-hemorrhagic ventricular dilatation. J Pediatr 152:648–654.  https://doi.org/10.1016/j.jpeds.2007.10.005 CrossRefGoogle Scholar
  79. 79.
    Adams-Chapman I, Hansen NI, Stoll BJ, Higgins R (2008) Neurodevelopmental outcome of extremely low birth weight infants with posthemorrhagic hydrocephalus requiring shunt insertion. Pediatrics 121:e1167–e1177.  https://doi.org/10.1542/peds.2007-0423 CrossRefGoogle Scholar
  80. 80.
    Radic JAE, Vincer M, McNeely PD (2015) Outcomes of intraventricular hemorrhage and posthemorrhagic hydrocephalus in a population-based cohort of very preterm infants born to residents of Nova Scotia from 1993 to 2010. J Neurosurg Pediatr 15:580–588.  https://doi.org/10.3171/2014.11.PEDS14364 CrossRefGoogle Scholar
  81. 81.
    Sasidharan P, Marquez E, Dizon E, Sridhar CV (1986) Developmental outcome of infants with severe intracranial-intraventricular hemorrhage and hydrocephalus with and without ventriculoperitoneal shunt. Childs Nerv Syst 2:149–152.  https://doi.org/10.1007/BF00270845 CrossRefGoogle Scholar
  82. 82.
    O’Shea TM, Allred EN, Kuban KCK et al (2012) Intraventricular hemorrhage and developmental outcomes at 24 months of age in extremely preterm infants. J Child Neurol 27:22–29.  https://doi.org/10.1177/0883073811424462 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Paola Valdez Sandoval
    • 1
  • Paola Hernández Rosales
    • 1
  • Deyanira Gabriela Quiñones Hernández
    • 1
  • Eva Alejandra Chavana Naranjo
    • 2
  • Victor García Navarro
    • 1
    • 3
    Email author
  1. 1.Department of Clinical SciencesTecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus GuadalajaraGuadalajaraMexico
  2. 2.Neonatology DepartmentNuevo Hospital Civil de Guadalajara, Juan I. MenchacaGuadalajaraMexico
  3. 3.Neurosurgery DepartmentNuevo Hospital Civil de Guadalajara, Juan I. MenchacaGuadalajaraMexico

Personalised recommendations