Clinical significance of rectus femoris diameter in heart failure patients

  • Yoshimi Sato
  • Hirokazu ShiraishiEmail author
  • Naohiko Nakanishi
  • Kan Zen
  • Takeshi Nakamura
  • Tetsuhiro Yamano
  • Takeshi Shirayama
  • Satoaki Matoba
Original Article


Heart failure (HF) is often accompanied by skeletal muscle weakness and exercise intolerance, which are known as prognostic factors of HF. Comprehensive evaluation of physical function is important, but it is not commonly conducted because of the lack of equipment or appropriate expertise. Measurement of rectus femoris diameter (RFD) by ultrasound is convenient and noninvasive, but it has not been clarified that RFD could represent physical functions in HF patients. This study evaluated 185 consecutive HF patients and underwent assessment including RFD, grip power (GP), knee extension strength (KES), skeletal muscle index (SMI), nutrition status, cardiopulmonary exercise testing, and New York Heart Association (NYHA) functional class. RFD was related with NYHA class and significantly correlated with GP, KES, SMI, body mass index, pre-albumin level, geriatric nutritional risk index, and peak VO2 (r = 0.631, 0.676, 0.510, 0.568, 0.380, 0.539, 0.527, respectively; p < 0.001). Multivariate regression analysis revealed that estimated glomerular filtration rate (β = 0.551) and RFD (β = 0.326) were predictive factors of peak VO2. Gender, age, brain natriuretic peptide level, left ventricular ejection fraction, and hemoglobin level were the other explanatory parameters. The cut off value of RFD for sarcopenia diagnosis was estimated as 15 mm (sensitivity = 0.767 and specificity = 0.808). RFD is a simple and useful marker which reflects skeletal muscle strength/volume, exercise tolerance, nutrition status, and NYHA class. It is also associated with sarcopenia in HF patients.


Rectus femoris muscle Heart failure Exercise tolerance Sarcopenia 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force M, Document R (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail 18(8):891–975CrossRefGoogle Scholar
  2. 2.
    Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, Poole-Wilson PA, Coats AJ, Anker SD (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353(9167):1838–1842CrossRefGoogle Scholar
  3. 3.
    Sente T, Van Berendoncks AM, Hoymans VY, Vrints CJ (2016) Adiponectin resistance in skeletal muscle: pathophysiological implications in chronic heart failure. J Cachexia Sarcopenia Muscle 7(3):261–274CrossRefGoogle Scholar
  4. 4.
    Coats AJS, Forman DE, Haykowsky M, Kitzman DW, McNeil A, Campbell TS, Arena R (2017) Physical function and exercise training in older patients with heart failure. Nat Rev Cardiol 14(9):550–559CrossRefGoogle Scholar
  5. 5.
    Okita K, Yonezawa K, Nishijima H, Hanada A, Ohtsubo M, Kohya T, Murakami T, Kitabatake A (1998) Skeletal muscle metabolism limits exercise capacity in patients with chronic heart failure. Circulation 98(18):1886–1891CrossRefGoogle Scholar
  6. 6.
    Kinugawa S, Takada S, Matsushima S, Okita K, Tsutsui H (2015) Skeletal muscle abnorm heart fail. Int Heart J 56(5):475–484CrossRefGoogle Scholar
  7. 7.
    Cohen-Solal A, Barnier P, Pessione F, Seknadji P, Logeart D, Laperche T, Gourgon R (1997) Comparison of the long-term prognostic value of peak exercise oxygen pulse and peak oxygen uptake in patients with chronic heart failure. Heart 78(6):572–576CrossRefGoogle Scholar
  8. 8.
    Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346(11):793–801CrossRefGoogle Scholar
  9. 9.
    Mancini DM, Eisen H, Kussmaul W, Mull R, Edmunds LH Jr, Wilson JR (1991) Value of peak exercise oxygen consumption for optimal timing of cardiac transplantation in ambulatory patients with heart failure. Circulation 83(3):778–786CrossRefGoogle Scholar
  10. 10.
    Onoue Y, Izumiya Y, Hanatani S, Tanaka T, Yamamura S, Kimura Y, Araki S, Sakamoto K, Tsujita K, Yamamoto E, Yamamuro M, Kojima S, Kaikita K, Hokimoto S (2016) A simple sarcopenia screening test predicts future adverse events in patients with heart failure. Int J Cardiol 215:301–306CrossRefGoogle Scholar
  11. 11.
    Narumi T, Arimoto T, Funayama A, Kadowaki S, Otaki Y, Nishiyama S, Takahashi H, Shishido T, Miyashita T, Miyamoto T, Watanabe T, Kubota I (2013) The prognostic importance of objective nutritional indexes in patients with chronic heart failure. J Cardiol 62(5):307–313CrossRefGoogle Scholar
  12. 12.
    Opasich C, Pinna GD, Bobbio M, Sisti M, Demichelis B, Febo O, Forni G, Riccardi R, Riccardi PG, Capomolla S, Cobelli F, Tavazzi L (1998) Peak exercise oxygen consumption in chronic heart failure: toward efficient use in the individual patient. J Am Coll Cardiol 31(4):766–775CrossRefGoogle Scholar
  13. 13.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, Martin FC, Michel JP, Rolland Y, Schneider SM, Topinkova E, Vandewoude M, Zamboni M, European Working Group on Sarcopenia in Older P (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in older people. Age Ageing 39(4):412–423CrossRefGoogle Scholar
  14. 14.
    Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, Chou MY, Chen LY, Hsu PS, Krairit O, Lee JS, Lee WJ, Lee Y, Liang CK, Limpawattana P, Lin CS, Peng LN, Satake S, Suzuki T, Won CW, Wu CH, Wu SN, Zhang T, Zeng P, Akishita M, Arai H (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15(2):95–101CrossRefGoogle Scholar
  15. 15.
    Thomaes T, Thomis M, Onkelinx S, Coudyzer W, Cornelissen V, Vanhees L (2012) Reliability and validity of the ultrasound technique to measure the rectus femoris muscle diameter in older CAD-patients. BMC Med Imaging 12:7CrossRefGoogle Scholar
  16. 16.
    Yasuda T, Nakajima T, Sawaguchi T, Nozawa N, Arakawa T, Takahashi R, Mizushima Y, Katayanagi S, Matsumoto K, Toyoda S, Inoue T (2017) Short Physical Performance Battery for cardiovascular disease inpatients: implications for critical factors and sarcopenia. Sci Rep 7(1):17425CrossRefGoogle Scholar
  17. 17.
    Abizanda P, Navarro JL, Garcia-Tomas MI, Lopez-Jimenez E, Martinez-Sanchez E, Paterna G (2012) Validity and usefulness of hand-held dynamometry for measuring muscle strength in community-dwelling older persons. Arch Gerontol Geriatr 54(1):21–27CrossRefGoogle Scholar
  18. 18.
    Vermeulen J, Neyens JC, Spreeuwenberg MD, van Rossum E, Hewson DJ, de Witte LP (2015) Measuring grip strength in older adults: comparing the grip-ball with the Jamar dynamometer. J Geriatr Phys Ther 38(3):148–153CrossRefGoogle Scholar
  19. 19.
    Kinugasa Y, Kato M, Sugihara S, Hirai M, Yamada K, Yanagihara K, Yamamoto K (2013) Geriatric nutritional risk index predicts functional dependency and mortality in patients with heart failure with preserved ejection fraction. Circ J 77(3):705–711CrossRefGoogle Scholar
  20. 20.
    Lourenco P, Silva S, Frioes F, Alvelos M, Amorim M, Couto M, Torres-Ramalho P, Guimaraes JT, Araujo JP, Bettencourt P (2014) Low prealbumin is strongly associated with adverse outcome in heart failure. Heart 100(22):1780–1785CrossRefGoogle Scholar
  21. 21.
    Ignacio de Ulibarri J, Gonzalez-Madrono A, de Villar NG, Gonzalez P, Gonzalez B, Mancha A, Rodriguez F, Fernandez G (2005) CONUT: a tool for controlling nutritional status First validation in a hospital population. Nutr Hosp 20(1):38–45PubMedGoogle Scholar
  22. 22.
    McCullough PA, Franklin BA, Leifer E, Fonarow GC (2010) Impact of reduced kidney function on cardiopulmonary fitness in patients with systolic heart failure. Am J Nephrol 32(3):226–233CrossRefGoogle Scholar
  23. 23.
    Scrutinio D, Agostoni P, Gesualdo L, Corra U, Mezzani A, Piepoli M, Di Lenarda A, Iorio A, Passino C, Magri D, Masarone D, Battaia E, Girola D, Re F, Cattadori G, Parati G, Sinagra G, Villani GQ, Limongelli G, Pacileo G, Guazzi M, Metra M, Frigerio M, Cicoira M, Mina C, Malfatto G, Caravita S, Bussotti M, Salvioni E, Veglia F, Correale M, Scardovi AB, Emdin M, Giannuzzi P, Gargiulo P, Giovannardi M, Perrone-Filardi P, Raimondo R, Ricci R, Paolillo S, Farina S, Belardinelli R, Passantino A, La Gioia R, Metabolic Exercise Test Data combined with C, Kidney Indexes Score Research G (2015) Renal function and peak exercise oxygen consumption in chronic heart failure with reduced left ventricular ejection fraction. Circ J 79(3):583–591CrossRefGoogle Scholar
  24. 24.
    Wasserman K (1994) Coupling of external to cellular respiration during exercise: the wisdom of the body revisited. Am J Physiol 266(4 Pt 1):E519–E539PubMedGoogle Scholar
  25. 25.
    Heitmann BL, Frederiksen P (2009) Thigh circumference and risk of heart disease and premature death: prospective cohort study. BMJ 339:b3292CrossRefGoogle Scholar
  26. 26.
    Newman AB, Kupelian V, Visser M, Simonsick EM, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Rubin SM, Harris TB (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61(1):72–77CrossRefGoogle Scholar
  27. 27.
    Izawa KP, Watanabe S, Yokoyama H, Hiraki K, Morio Y, Oka K, Osada N, Omiya K (2007) Muscle strength in relation to disease severity in patients with congestive heart failure. Am J Phys Med Rehabil 86(11):893–900CrossRefGoogle Scholar
  28. 28.
    Kamiya K, Masuda T, Matsue Y, Hamazaki N, Matsuzawa R, Tanaka S, Nozaki K, Maekawa E, Noda C, Yamaoka-Tojo M, Matsunaga A, Ako J (2017) Prognostic usefulness of arm and calf circumference in patients ≥65 years of age with cardiovascular disease. Am J Cardiol 119(2):186–191CrossRefGoogle Scholar
  29. 29.
    Bonilla-Palomas JL, Gámez-López AL, Anguita-Sánchez MP, Castillo-Domínguez JC, García-Fuertes D, Crespin-Crespin M, López-Granados A, Suárez de Lezo J (2011) Impact of malnutrition on long-term mortality in hospitalized patients with heart failure. Rev Esp Cardiol 64(9):752–758CrossRefGoogle Scholar
  30. 30.
    Nishi I, Seo Y, Hamada-Harimura Y, Sato K, Sai S, Yamamoto M, Ishizu T, Sugano A, Obara K, Wu L, Suzuki S, Koike A, Aonuma K, Ibaraki Cardiovascular Assessment Study-Heart Failure I (2017) Nutritional screening based on the controlling nutritional status (CONUT) score at the time of admission is useful for long-term prognostic prediction in patients with heart failure requiring hospitalization. Heart Vessels 32(11):1337–1349CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Yoshimi Sato
    • 1
  • Hirokazu Shiraishi
    • 1
    Email author
  • Naohiko Nakanishi
    • 1
  • Kan Zen
    • 1
  • Takeshi Nakamura
    • 1
  • Tetsuhiro Yamano
    • 1
  • Takeshi Shirayama
    • 1
  • Satoaki Matoba
    • 1
  1. 1.Department of Cardiovascular Medicine, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan

Personalised recommendations