Increased prevalence of cerebral microbleeds in patients with low left ventricular systolic function

  • Tomohiko Watanabe
  • Yumiko KanzakiEmail author
  • Yohei Yamauchi
  • Takahide Ito
  • Yusuke Nishida
  • Kenichiro Yamamura
  • Tsuyoshi Komori
  • Koichi Sohmiya
  • Masaaki Hoshiga
Original Article


Gradient-echo T2-star (T2*)-weighted magnetic resonance imaging (MRI) is a sensitive method to detect cerebral microbleeds (CMBs). The presence of CMBs was reported to be a marker of future cardiovascular mortality and is associated with various cardiovascular risk factors, use of antithrombotic drugs, and cognitive dysfunction. However, the relationship between cardiac function and CMBs remains unclear. We investigated the association between cardiac function and presence of CMBs in patients with cardiovascular diseases. This single-center retrospective study included a total of 424 participants (mean age 70 ± 12 years; men 286 (67%); mean left ventricular ejection fraction (LVEF) 61% ± 12%] who underwent echocardiography and brain T2*-weighted MRI within 1 month without neurologic abnormality. CMBs were found in 118 (28%) patients. There was no significant relationship between CMBs and anticoagulant or antiplatelet therapy. LVEF was significantly lower in patients with CMBs than in those without CMBs (59% ± 13% vs. 62% ± 11%, P < 0.05). On multivariate logistic analysis, lower LVEF [odds ratio (OR) 0.98, 95% confidence interval (CI) 0.96–1.00; P < 0.05] and age (OR 1.02, 95% CI 1.00–1.05; P < 0.05) were significantly associated with CMBs. The presence of CMBs was frequently observed in the patients with cardiovascular disease and was significantly associated with age and LVEF.


Brain microbleeds Cardiovascular disease Cardiac function MRI 



Cerebral microbleeds


Magnetic resonance imaging


Left ventricular


LV end-diastolic dimension


Interventricular septal thickness


Posterior wall thickness


Left ventricular ejection fraction


Left ventricular mass index


Estimated glomerular filtration rate


Coronary artery disease


Body mass index



We are gratefully thankful for the technical assistance of the staff (Mr. Yoichi Matsumoto and Ms. Erina Okada) in our MRI department, the secretary assistance of Ms. Megumi Hashimoto, Ms. Hitomi Iwai, and Ms. Yuko Takenaka and the advice of Dr. Naomi Toratani and Dr. Nobukazu Ishizaka.



Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Offenbacher H, Fazekas F, Schmidt R, Koch M, Fazekas G, Kapeller P (1996) MR of cerebral abnormalities concomitant with primary intracerebral hematomas. AJNR Am J Neuroradiol 17(3):573–578PubMedGoogle Scholar
  2. 2.
    Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM (2009) Principles, techniques, applications of T2*-based MR imaging its special applications. Radiographics 29(5):1433–1449CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hayashi K, Takayama M, Ka T, Kashiwagi K, Hishikawa A, Iwao Y, Itoh H (2017) Association of kidney dysfunction with asymptomatic cerebrovascular abnormalities in a Japanese population with health checkups. Circ J 81(8):1191–1197CrossRefPubMedGoogle Scholar
  4. 4.
    Greenberg SM, Vernooij MW, Cordonnier C, Viswanathan A, Al-Shahi Salman R, Warach S, Launer LJ, Van Buchem MA, Breteler MM (2009) Cerebral microbleeds: a guide to detection interpretation. Lancet Neurol 8(2):165–174CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Altmann-Schneider I, Trompet S, de Craen AJ, van Es AC, Jukema JW, Stott DJ, Sattar N, Westendorp RG, Buchem MA, van ver Grond J (2011) Cerebral microbleeds are predictive of mortality in the elderly. Stroke 42(3):638–644CrossRefPubMedGoogle Scholar
  6. 6.
    Lip GY, Frison L, Halperin JL, Lane DA (2011) Comparative validation of a novel risk score for predicting bleeding risk in anticoagulated patients with atrial fibrillation: the HAS-BLED (Hypertension, Abnormal Renal/Liver Function, Stroke, Bleeding History or Predisposition, Labile INR, Elderly, Drugs/Alcohol Concomitantly) score. J Am Coll Cardiol 57(2):173–180CrossRefPubMedGoogle Scholar
  7. 7.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Erne L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270CrossRefPubMedGoogle Scholar
  8. 8.
    Friedewald WT, Levy RI, Fredrickson DS (1972) Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem 18(6):499–502PubMedPubMedCentralGoogle Scholar
  9. 9.
    Caunca MR, Del Brutto V, Gardener H, Shah N, Dequatre-Ponchelle N, Cheung YK, Elkind MS, Brown TR, Cordonnier C, Sacco RL, Wright CB (2016) Cerebral microbleeds, vascular risk factors, magnetic resonance imaging markers: the Northern Manhattan Study. J Am Heart Assoc 5(9):e003477CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Jeerakathil T, Wolf PA, Beiser A, Hald JK, Au R, Kase CS, Massaro JM, DeCarli C (2004) Cerebral microbleeds: prevalence associations with cardiovascular risk factors in the Framingham Study. Stroke 35(8):1831–1835CrossRefPubMedGoogle Scholar
  11. 11.
    Sveinbjornsdottir S, Sigurdsson S, Aspelund T, Kjartansson O, Eiriksdottir G, Valtysdottir B, Lopez OL, van Buchem MA, Jonsson PV, Gudnason V, Launer LJ (2008) Cerebral microbleeds in the population based AGES-Reykjavik study: prevalence location. J Neurol Neurosurg Psychiatry 79(9):1002–1006CrossRefPubMedGoogle Scholar
  12. 12.
    Walker DA, Broderick DF, Kotsenas AL, Rubino FA (2004) Routine use of gradient-echo MRI to screen for cerebral amyloid angiopathy in elderly patients. AJR Am J Roentgenol 182(6):1547–1550CrossRefPubMedGoogle Scholar
  13. 13.
    Vernooij MW, ver Lugt A, Ikram MA, Wielopolski PA, Niessen WJ, Hofman A, Krestin GP, Breteler MM (2008) Prevalence risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 70(14):1208–1214CrossRefPubMedGoogle Scholar
  14. 14.
    Goos JD, Henneman WJ, Sluimer JD, Vrenken H, Sluimer IC, Barkhof F, Blankenstein MA, Scheltens PH, ver Flier WM (2010) Incidence of cerebral microbleeds: a longitudinal study in a memory clinic population. Neurology 74(24):1954–1960CrossRefPubMedGoogle Scholar
  15. 15.
    Cordonnier C, Al-Shahi Salman R, Wardlaw J (2007) Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design reporting. Brain 130(Pt 8):1988–2003CrossRefPubMedGoogle Scholar
  16. 16.
    Igase M, Tabara Y, Igase K, Nagai T, Ochi N, Kido T, Nakura J, Sadamoto K, Kohara K, Miki T (2009) Asymptomatic cerebral microbleeds seen in healthy subjects have a strong association with asymptomatic lacunar infarction. Circ J 73(3):530–533CrossRefPubMedGoogle Scholar
  17. 17.
    Wardlaw JM, Lewis SC, Keir SL, Dennis MS, Shenkin S (2006) Cerebral microbleeds are associated with lacunar stroke defined clinically radiologically, independently of white matter lesions. Stroke 37(10):2633–2636CrossRefPubMedGoogle Scholar
  18. 18.
    Poels MM, Ikram MA, ver Lugt A, Hofman A, Niessen WJ, Krestin GP, Breteler MM, Vernooij MW (2012) Cerebral microbleeds are associated with worse cognitive function: the Rotterdam Scan Study. Neurology 78(5):326–333CrossRefPubMedGoogle Scholar
  19. 19.
    Yakushiji Y, Noguchi T, Hara M, Nishihara M, Eriguchi M, Nanri Y, Nishiyama M, Hirotsu T, Nakajima J, Kuroda Y, Hara H (2012) Distributional impact of brain microbleeds on global cognitive function in adults without neurological disorder. Stroke 43(7):1800–1805CrossRefPubMedGoogle Scholar
  20. 20.
    Poliakova T, Levin O, Arablinskiy A, Vasenina E, Zerr I (2016) Cerebral microbleeds in early Alzheimer's disease. J Neurol 263(10):1961–1968CrossRefPubMedGoogle Scholar
  21. 21.
    Henneman WJ, Sluimer JD, Cordonnier C, Baak MM, Scheltens P, Barkhof F, ver Flier WM (2009) MRI biomarkers of vascular damage atrophy predicting mortality in a memory clinic population. Stroke 40(2):492–498CrossRefPubMedGoogle Scholar
  22. 22.
    Shoamanesh A, Kwok CS, Benavente O (2011) Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis 32(6):528–534CrossRefPubMedGoogle Scholar
  23. 23.
    Fazekas F, Kleinert R, Roob G, Kleinert G, Kapeller P, Schmidt R, Hartung HP (1999) Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 20(4):637–642PubMedGoogle Scholar
  24. 24.
    Tanaka A, Ueno Y, Nakayama Y, Takano K, Takebayashi S (1999) Small chronic hemorrhages ischemic lesions in association with spontaneous intracerebral hematomas. Stroke 30(8):1637–1642CrossRefPubMedGoogle Scholar
  25. 25.
    Darweesh SK, Leening MJ, Akoudad S, Loth DW, Hofman A, Ikram MA, Vernooij MW, Stricker BH (2013) Clopidogrel use is associated with an increased prevalence of cerebral microbleeds in a stroke-free population: the Rotterdam study. J Am Heart Assoc 2(5):e000359CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lovelock CE, Cordonnier C, Naka H, Al-Shahi Salman R, Sudlow CL, Sorimachi T, Werring DJ, Gregoire SM, Imaizumi T, Lee SH, Briley D, Rothwell PM (2010) Antithrombotic drug use, cerebral microbleeds, intracerebral hemorrhage: a systematic review of published unpublished studies. Stroke 41(6):1222–1228CrossRefPubMedGoogle Scholar
  27. 27.
    Fisher M (2016) Cerebral microbleeds thrombolysis: clinical consequences mechanistic implications. JAMA Neurol 73(6):632–635CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wang Z, Soo YO, Mok VC (2014) Cerebral microbleeds: is antithrombotic therapy safe to administer? Stroke 45(9):2811–2817CrossRefPubMedGoogle Scholar
  29. 29.
    Lee SH, Ryu WS, Roh JK (2009) Cerebral microbleeds are a risk factor for warfarin-related intracerebral hemorrhage. Neurology 72(2):171–176CrossRefPubMedGoogle Scholar
  30. 30.
    Li AH, Chu YT, Yang LH, Chen KC, Chu SH (2007) More coronary artery stenosis, more cerebral artery stenosis? A simultaneous angiographic study discloses their strong correlation. Heart Vessels 22(5):297–302CrossRefPubMedGoogle Scholar
  31. 31.
    Gregg NM, Kim AE, Gurol ME, Lopez OL, Aizenstein HJ, Price JC, Mathis CA, James JA, Snitz BE, Cohen AD, Kamboh MI, Minhas D, Weissfeld LA, Tamburo EL, Klunk WE (2015) Incidental cerebral microbleeds cerebral blood flow in elderly individuals. JAMA Neurol 72(9):1021–1028CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Doi H, Inamizu S, Saito BY, Murai H, Araki T, Kira J (2015) Analysis of cerebral lobar microbleeds a decreased cerebral blood flow in a memory clinic setting. Intern Med 54(9):1027–1033CrossRefPubMedGoogle Scholar
  33. 33.
    Wira CR 3rd, Rivers E, Silver B, Lewowski C (2011) The impact of cardiac contractility on cerebral blood flow in ischemia. West J Emerg Med 12(2):227–232PubMedPubMedCentralGoogle Scholar
  34. 34.
    Choi BR, Kim JS, Yang YJ, Park KM, Lee CW, Kim YH, Hong MK, Song JK, Park SW, Park SJ, Kim JJ (2006) Factors associated with decreased cerebral blood flow in congestive heart failure secondary to idiopathic dilated cardiomyopathy. Am J Cardiol 97(9):1365–1369CrossRefPubMedGoogle Scholar
  35. 35.
    Kim MS, Kim JS, Yun SC, Lee CW, Song JK, Park SW, Park SJ, Kim JJ (2012) Association of cerebral blood flow with the development of cardiac death or urgent heart transplantation in patients with systolic heart failure. Eur Heart J 33(3):354–362CrossRefPubMedGoogle Scholar
  36. 36.
    Kim MS, Kim JS, Kim YR, Han SB, Kim DH, Song JM, Kang DH, Song JK, Park SW, Park SJ, Kim JJ (2012) Cerebral blood flow as a marker for recovery of left ventricular systolic dysfunction in patients with idiopathic dilated cardiomyopathy. J Card Fail 18(7):549–555CrossRefPubMedGoogle Scholar
  37. 37.
    Suzuki S, Yamashita T, Okumura K, Atarashi H, Akao M, Ogawa H, Inoue H (2015) Incidence of ischemic stroke in Japanese patients with atrial fibrillation not receiving anticoagulation therapy—pooled analysis of the Shinken Database, J-RHYTHM Registry, Fushimi AF Registry. Circ J 79(2):432–438CrossRefPubMedGoogle Scholar
  38. 38.
    Yamashiro K, Tanaka R, Okuma Y, Ueno Y, Tanaka Y, Hattori N, Urabe T (2014) Associations of durations of antiplatelet use vascular risk factors with the presence of cerebral microbleeds. J Stroke Cerebrovasc Dis 23(3):433–440CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CardiologyOsaka Medical CollegeTakatsukiJapan
  2. 2.Department of RadiologyOsaka Medical CollegeTakatsukiJapan

Personalised recommendations