Advertisement

Earliest pulmonary vein potential-guided cryoballoon ablation for atrial fibrillation

  • Yoshiaki MizutaniEmail author
  • Masaaki Kanashiro
  • Yuichiro Makino
  • Akinori Satake
  • Wataru Suzuki
  • Masanari Kurobe
  • Kouji Mizutani
  • Hitoshi Ichimiya
  • Yasuhiro Uchida
  • Junji Watanabe
  • Satoshi Ichimiya
  • Yasuya Inden
  • Toyoaki Murohara
Original Article

Abstract

No studies have evaluated both the time-to-isolation (TTI) and the sequence of pulmonary vein (PV) potentials in cryoballoon ablation (CBA) for atrial fibrillation (AF). This study aimed to prospectively evaluate the acute results of pulmonary vein isolation (PVI) using a novel CBA technique—the earliest potential (EP) of PV-guided CBA—in paroxysmal AF. We pressed a balloon against the earliest PV potential site during PVI when TTI could not be achieved within 60 s (EP-guided CBA group). We compared 32 patients consecutively treated by EP-guided CBA to 32 patients treated without pressing the balloon against the EP site (conventional CBA group). The cryoapplication protocol was the same, except with regard to the pressing of the balloon. All 256 PVs (EP-guided CBA group, 128 PVs; conventional CBA group, 128 PVs) were isolated successfully. The TTI observation rate was similar in both groups. Compared with conventional CBA, EP-guided CBA was associated with a lower non-success rate of TTI ≤ 90 s (9% vs. 26%; P = 0.040) and shorter left atrial dwell time (38 ± 9 vs. 46 ± 19 min; P = 0.036), total procedure time (76 ± 15 vs. 87 ± 23 min; P = 0.043), and fluoroscopy time (23 ± 8 vs. 30 ± 11 min; P = 0.006). This novel EP-guided CBA approach may help facilitate the ablation procedure.

Keywords

Atrial fibrillation Cryoballoon ablation Earliest potential Pulmonary vein isolation Time-to-isolation 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Kuck KH, Brugada J, Fürnkranz A, Metzner A, Ouyang F, Chun KR, Elvan A, Arentz T, Bestehorn K, Pocock SJ, Albenque JP, Tondo C, Investigators FIREANDICE (2016) Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med 374:2235–2245CrossRefGoogle Scholar
  2. 2.
    Kuck KH, Fürnkranz A, Chun KR, Metzner A, Ouyang F, Schlüter M, Elvan A, Lim HW, Kueffer FJ, Arentz T, Albenque JP, Tondo C, Kühne M, Sticherling C, Brugada J, Investigators FIREANDICE (2016) Cryoballoon or radiofrequency ablation for symptomatic paroxysmal atrial fibrillation: reintervention, rehospitalization, and quality-of-life outcomes in the FIRE AND ICE Trial. Eur Heart J 37:2858–2865CrossRefGoogle Scholar
  3. 3.
    Shah D (2009) Electrophysiological evaluation of pulmonary vein isolation. Europace 11:1423–1433CrossRefGoogle Scholar
  4. 4.
    Satake S, Tanaka K, Saito S, Tanaka S, Sohara H, Hiroe Y, Miyashita Y, Takahashi S, Murakami M, Watanabe Y (2003) Usefulness of a new radiofrequency thermal balloon catheter for pulmonary vein isolation: a new device for treatment of atrial fibrillation. J Cardiovasc Electrophysiol 14:609–615CrossRefGoogle Scholar
  5. 5.
    Dukkipati SR, Cuoco F, Kutinsky I, Aryana A, Bahnson TD, Lakkireddy D, Woollett I, Issa ZF, Natale A, Reddy VY, HeartLight Study Investigators (2015) Pulmonary vein isolation using the visually guided laser balloon: a prospective, multicenter, and randomized comparison to standard radiofrequency ablation. J Am Coll Cardiol 66:1350–1360CrossRefGoogle Scholar
  6. 6.
    Ciconte G, de Asmundis C, Sieira J, Conte G, Di Giovanni G, Mugnai G, Saitoh Y, Baltogiannis G, Irfan G, Coutiño-Moreno HE, Hunuk B, Velagić V, Brugada P, Chierchia GB (2015) Single 3-minute freeze for second-generation cryoballoon ablation: one-year follow-up after pulmonary vein isolation. Heart Rhythm 12:673–680CrossRefGoogle Scholar
  7. 7.
    Kühne M, Knecht S, Altmann D, Ammann P, Schaer B, Osswald S, Sticherling C (2013) Validation of a novel spiral mapping catheter for real-time recordings from the pulmonary veins during cryoballoon ablation of atrial fibrillation. Heart Rhythm 10:241–246CrossRefGoogle Scholar
  8. 8.
    Chun KJ, Bordignon S, Gunawardene M, Urban V, Kulikoglu M, Schulte-Hahn B, Nowak B, Schmidt B (2012) Single transseptal big cryoballoon pulmonary vein isolation using an inner lumen mapping catheter. Pacing Clin Electrophysiol 35:1304–1311CrossRefGoogle Scholar
  9. 9.
    Aryana A, Kenigsberg DN, Kowalski M, Koo CH, Lim HW, O'Neill PG, Bowers MR, Hokanson RB, Ellenbogen KA, Investigators Cryo-DOSING (2017) Verification of a novel atrial fibrillation cryoablation dosing algorithm guided by time-to-pulmonary vein isolation: results from the Cryo-DOSING Study (cryoballoon-ablation DOSING based on the assessment of time-to-effect and pulmonary vein isolation guidance). Heart Rhythm 14:1319–1325CrossRefGoogle Scholar
  10. 10.
    Pott A, Kraft C, Stephan T, Petscher K, Rottbauer W, Dahme T (2018) Time-to-isolation guided titration of freeze duration in 3rd generation short-tip cryoballoon pulmonary vein isolation—comparable clinical outcome and shorter procedure duration. Int J Cardiol 255:80–84CrossRefGoogle Scholar
  11. 11.
    Aryana A, Mugnai G, Singh SM, Pujara DK, de Asmundis C, Singh SK, Bowers MR, Brugada P, d'Avila A, O'Neill PG, Chierchia GB (2016) Procedural and biophysical indicators of durable pulmonary vein isolation during cryoballoon ablation of atrial fibrillation. Heart Rhythm 13:424–432CrossRefGoogle Scholar
  12. 12.
    Ciconte G, Mugnai G, Sieira J, Velagić V, Saitoh Y, Irfan G, Hunuk B, Ströker E, Conte G, Di Giovanni G, Baltogiannis G, Wauters K, Brugada P, de Asmundis C, Chierchia GB (2015) On the quest for the best freeze: predictors of late pulmonary vein reconnections after second-generation cryoballoon ablation. Circ Arrhythm Electrophysiol 8:1359–1365CrossRefGoogle Scholar
  13. 13.
    Nakagawa H, Jackman WM (2014) The role of contact force in atrial fibrillation ablation. J Atr Fibrillation 7:1027Google Scholar
  14. 14.
    Chen S, Schmidt B, Bordignon S, Bologna F, Nagase T, Perrotta L, Julian Chun KR (2018) Practical techniques in cryoballoon ablation: how to isolate inferior pulmonary veins. Arrhythm Electrophysiol Rev 7:11–17CrossRefGoogle Scholar
  15. 15.
    Ciconte G, Velagić V, Mugnai G, Saitoh Y, Irfan G, Hunuk B, Ströker E, Conte G, Sieira J, Di Giovanni G, Baltogiannis G, Brugada P, de Asmundis C, Chierchia GB (2016) Electrophysiological findings following pulmonary vein isolation using radiofrequency catheter guided by contact-force and second-generation cryoballoon: lessons from repeat ablation procedures. Europace 18:71–77CrossRefGoogle Scholar
  16. 16.
    Aryana A, Kowalski M, O’Neill PG, Koo CH, Lim HW, Khan A, Hokanson RB, Bowers MR, Kenigsberg DN, Ellenbogen KA, Cryo-DOSING Investigators (2016) Catheter ablation using the third-generation cryoballoon provides an enhanced ability to assess time to pulmonary vein isolation facilitating the ablation strategy: short- and long-term results of a multicenter study. Heart Rhythm 13:2306–2313CrossRefGoogle Scholar
  17. 17.
    Chierchia GB, Mugnai G, Ströker E, Velagic V, Hünük B, Moran D, Hacioglu E, Poelaert J, Verborgh C, Umbrain V, Beckers S, Ruggiero D, Brugada P, de Asmundis C (2016) Incidence of real-time recordings of pulmonary vein potentials using the third-generation short-tip cryoballoon. Europace 18:1158–1163CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Yoshiaki Mizutani
    • 1
    Email author
  • Masaaki Kanashiro
    • 1
  • Yuichiro Makino
    • 1
  • Akinori Satake
    • 1
  • Wataru Suzuki
    • 1
  • Masanari Kurobe
    • 1
  • Kouji Mizutani
    • 1
  • Hitoshi Ichimiya
    • 1
  • Yasuhiro Uchida
    • 1
  • Junji Watanabe
    • 1
  • Satoshi Ichimiya
    • 1
  • Yasuya Inden
    • 2
  • Toyoaki Murohara
    • 2
  1. 1.Department of CardiologyYokkaichi Municipal HospitalYokkaichiJapan
  2. 2.Department of CardiologyNagoya University HospitalNagoyaJapan

Personalised recommendations