Increase of chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes after acute myocardial infarction chymase activity after acute myocardial infarction

  • Keisuke OkamuraEmail author
  • Tetsu Okuda
  • Kazuyuki Shirai
  • Hidenori Urata
Original Article


A previous clinical study revealed elevation of chymase- and cathepsin G-dependent angiotensin II-forming activity (AIIFA) in the myocardium after acute myocardial infarction (AMI). This study examined the time course of chymase- and cathepsin G-dependent AIIFA in circulating mononuclear leukocytes (CML) after AMI. Consecutive patients with AMI were recruited. Chymase- and cathepsin G-dependent AIIFA in CML were assayed using a modified angiotensin I substrate with Nma/Dnp fluorescence quenching. The changes of CML AIIFA were monitored over time in the patients. Fifteen consecutive AMI patients admitted to our hospital were recruited. At 1 day after the admission, CML chymase- and cathepsin G-dependent AIIFA were 2.9- and 1.7-fold higher than at discharge, respectively. The ratio of chymase-dependent AIIFA to total AIIFA was significantly increased. AIIFA gradually decreased over time after the admission. The peak value of chymase- and cathepsin G-dependent AIIFA was significantly correlated with the maximum levels of aspartate aminotransferase (r = 0.53, 0.64), lactate dehydrogenase (r = 0.57, 0.62), and creatine kinase (r = 0.60, 0.65). This is the first evidence that chymase- and cathepsin G-dependent AIIFA is elevated in CML after AMI. Our data suggested that chymase-dependent AIIFA is increased in CML as well as in the myocardium after AMI, and that the level of chymase-dependent AIIFA might reflect the severity of infarction.


Chymase Cathepsin G Acute myocardial infarction Angiotensin II-forming activity Renin–angiotensin system 



We thank Mrs. Harumi Arimura and Mrs. Yukiko Sumi for their excellent technical assistance.


This work was supported by JSPS KAKENHI (Grant numbers: 21590916 and 26461118).


  1. 1.
    Arakawa K (1996) Serine protease angiotensin II systems. J Hypertens Suppl 14:S3–S7CrossRefGoogle Scholar
  2. 2.
    Wei CC, Meng QC, Palmer R, Hageman GR, Durand J, Bradley WE, Farrell DM, Hankes GH, Oparil S, Dell’Italia LJ (1999) Evidence for angiotensin-converting enzyme- and chymase-mediated angiotensin II formation in the interstitial fluid space of the dog heart in vivo. Circulation 99:2583–2589CrossRefGoogle Scholar
  3. 3.
    Takai S, Sakaguchi M, Jin D, Yamada M, Kirimura K, Miyazaki M (2001) Different angiotensin II-forming pathways in human and rat vascular tissues. Clin Chim Acta 305:191–195CrossRefGoogle Scholar
  4. 4.
    Urata H, Kinoshita A, Misono KS, Bumpus FM, Husain A (1990) Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem 265:22348–22357Google Scholar
  5. 5.
    Urata H, Healy B, Stewart RW, Bumpus FM, Husain A (1990) Angiotensin II-forming pathways in normal and failing human hearts. Circ Res 66:883–890CrossRefGoogle Scholar
  6. 6.
    Koga T, Urata H, Inoue Y, Hoshino T, Okamoto T, Matsunaga A, Suzuki M, Miyazaki J, Ideishi M, Arakawa K, Saku K (2003) Human chymase expression in a mice induces mild hypertension with left ventricular hypertrophy. Hypertens Res 26:759–768CrossRefGoogle Scholar
  7. 7.
    Mangiapane ML, Rauch AL, MacAndrew JT, Ellery SS, Hoover KW, Knight DR, Johnson HA, Magee WP, Cushing DJ, Buchholz RA (1994) Vasoconstrictor action of angiotensin I-convertase and the synthetic substrate (Pro11, d-Ala12)-angiotensin I. Hypertension 23:857–860CrossRefGoogle Scholar
  8. 8.
    Schuh JR, Blehm DJ, Frierdich GE, McMahon EG, Blaine EH (1993) Differential effects of renin–angiotensin system blockade on atherogenesis in cholesterol-fed rabbits. J Clin Investig 91:1453–1458CrossRefGoogle Scholar
  9. 9.
    Yang BC, Phillips MI, Mohuczy D, Meng H, Shen L, Mehta P, Mehta JL (1998) Increased angiotensin II type 1 receptor expression in hypercholesterolemic atherosclerosis in rabbits. Arterioscler Thromb Vasc Biol 18:1433–1439CrossRefGoogle Scholar
  10. 10.
    Nishimura H, Buikema H, Baltatu O, Ganten D, Urata H (1998) Functional evidence for alternative ANG II-forming pathways in hamster cardiovascular system. Am J Physiol 275:H1307–H1312Google Scholar
  11. 11.
    Diet F, Pratt RE, Berry GJ, Momose N, Gibbons GH, Dzau VJ (1996) Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 94:2756–2767CrossRefGoogle Scholar
  12. 12.
    Uehara Y, Urata H, Sasaguri M, Ideishi M, Sakata N, Tashiro T, Kimura M, Arakawa K (2000) Increased chymase activity in internal thoracic artery of patients with hypercholesterolemia. Hypertension 35:55–60CrossRefGoogle Scholar
  13. 13.
    Ihara M, Urata H, Kinoshita A, Suzumiya J, Sasaguri M, Kikuchi M, Ideishi M, Arakawa K (1999) Increased chymase-dependent angiotensin II formation in human atherosclerotic aorta. Hypertension 33:1399–1405CrossRefGoogle Scholar
  14. 14.
    Akasu M, Urata H, Kinoshita A, Sasaguri M, Ideishi M, Arakawa K (1998) Differences in tissue angiotensin II-forming pathways by species and organs in vitro. Hypertension 32:514–520CrossRefGoogle Scholar
  15. 15.
    Ihara M, Urata H, Shirai K, Ideishi M, Hoshino F, Suzumiya J, Kikuchi M, Arakawa K (2000) High cardiac angiotensin-II-forming activity in infarcted and non-infarcted human myocardium. Cardiology 94:247–253CrossRefGoogle Scholar
  16. 16.
    Hoshino F, Urata H, Inoue Y, Saito Y, Yahiro E, Ideishi M, Arakawa K, Saku K (2003) Chymase inhibitor improves survival in hamsters with myocardial infarction. J Cardiovasc Pharmacol 41(Suppl 1):S11–S18Google Scholar
  17. 17.
    Okamura K, Okuda T, Shirai K, Urata H (2017) Positive correlation between blood pressure or heart rate and chymase-dependent angiotensin II-forming activity in circulating mononuclear leukocytes measured by new ELISA. Clin Exp Hypertens 40:112–117CrossRefGoogle Scholar
  18. 18.
    Takai S, Jin D, Sakaguchi M, Miyazaki M (1999) Chymase-dependent angiotensin II formation in human vascular tissue. Circulation 100:654–658CrossRefGoogle Scholar
  19. 19.
    Kaartinen M, Penttila A, Kovanen PT (1994) Accumulation of activated mast cells in the shoulder region of human coronary atheroma, the predilection site of atheromatous rupture. Circulation 90:1669–1678CrossRefGoogle Scholar
  20. 20.
    Okunishi H, Oka Y, Shiota N, Kawamoto T, Song K, Miyazaki M (1993) Marked species-difference in the vascular angiotensin II-forming pathways: humans versus rodents. Jpn J Pharmacol 62:207–210CrossRefGoogle Scholar
  21. 21.
    Kovanen PT, Kaartinen M, Paavonen T (1995) Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation 92:1084–1088CrossRefGoogle Scholar
  22. 22.
    Uehara Y, Urata H, Ideishi M, Arakawa K, Saku K (2002) Chymase inhibition suppresses high-cholesterol diet-induced lipid accumulation in the hamster aorta. Cardiovasc Res 55:870–876CrossRefGoogle Scholar
  23. 23.
    Hokimoto S, Yasue H, Fujimoto K, Sakata R, Miyamoto E (1995) Increased angiotensin converting enzyme activity in left ventricular aneurysm of patients after myocardial infarction. Cardiovasc Res 29:664–669CrossRefGoogle Scholar
  24. 24.
    Oyamada S, Bianchi C, Takai S, Robich MP, Clements RT, Chu L, Sellke FW (2010) Impact of acute myocardial ischemia reperfusion on the tissue and blood-borne renin–angiotensin system. Basic Res Cardiol 105:513–522CrossRefGoogle Scholar
  25. 25.
    Tchougounova E, Lundequist A, Fajardo I, Winberg JO, Abrink M, Pejler G (2005) A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 280:9291–9296CrossRefGoogle Scholar
  26. 26.
    Kelly D, Cockerill G, Ng LL, Thompson M, Khan S, Samani NJ, Squire IB (2007) Plasma matrix metalloproteinase-9 and left ventricular remodelling after acute myocardial infarction in man: a prospective cohort study. Eur Heart J 28:711–718CrossRefGoogle Scholar
  27. 27.
    Ducharme A, Frantz S, Aikawa M, Rabkin E, Lindsey M, Rohde LE, Schoen FJ, Kelly RA, Werb Z, Libby P, Lee RT (2000) Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Investig 106:55–62CrossRefGoogle Scholar
  28. 28.
    Deten A, Holzl A, Leicht M, Barth W, Zimmer HG (2001) Changes in extracellular matrix and in transforming growth factor beta isoforms after coronary artery ligation in rats. J Mol Cell Cardiol 33:1191–1207CrossRefGoogle Scholar
  29. 29.
    Takai S, Jin D, Sakaguchi M, Katayama S, Muramatsu M, Sakaguchi M, Matsumura E, Kim S, Miyazaki M (2003) A novel chymase inhibitor, 4-[1-([bis-(4-methyl-phenyl)-methyl]-carbamoyl)3-(2-ethoxy-benzyl)-4-oxo-azetidin e-2-yloxy]-benzoic acid (BCEAB), suppressed cardiac fibrosis in cardiomyopathic hamsters. J Pharmacol Exp Ther 305:17–23CrossRefGoogle Scholar
  30. 30.
    Jin D, Takai S, Yamada M, Sakaguchi M, Yao Y, Miyazaki M (2001) Possible roles of cardiac chymase after myocardial infarction in hamster hearts. Jpn J Pharmacol 86:203–214CrossRefGoogle Scholar
  31. 31.
    Wang M, Tan J, Wang Y, Meldrum KK, Dinarello CA, Meldrum DR (2009) IL-18 binding protein-expressing mesenchymal stem cells improve myocardial protection after ischemia or infarction. Proc Natl Acad Sci USA 106:17499–17504CrossRefGoogle Scholar
  32. 32.
    Oyamada S, Bianchi C, Takai S, Chu LM, Sellke FW (2011) Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther 339:143–151CrossRefGoogle Scholar
  33. 33.
    Kanemitsu H, Takai S, Tsuneyoshi H, Nishina T, Yoshikawa K, Miyazaki M, Ikeda T, Komeda M (2006) Chymase inhibition prevents cardiac fibrosis and dysfunction after myocardial infarction in rats. Hypertens Res 29:57–64CrossRefGoogle Scholar
  34. 34.
    Devarajan S, Yahiro E, Uehara Y, Habe S, Nishiyama A, Miura S, Saku K, Urata H (2015) Depressor effect of chymase inhibitor in mice with high salt-induced moderate hypertension. Am J Physiol Heart Circ Physiol 309:H1987–H1996CrossRefGoogle Scholar
  35. 35.
    Murakami K, Uehara Y, Abe S, Inoue Y, Ideishi M, Saku K, Urata H (2007) Positive correlation between chymase-like angiotensin II-forming activity in mononuclear cells and serum cholesterol level. J Cardiol 50:291–298Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cardiovascular DiseasesFukuoka University Chikushi HospitalFukuokaJapan

Personalised recommendations