Heart and Vessels

, Volume 34, Issue 5, pp 809–814 | Cite as

Relationship between non-osmotic arginine vasopressin secretion and hemoglobin A1c levels in adult patients with congenital heart disease

  • Tomoaki MurakamiEmail author
  • Yoko Horibata
  • Shigeru Tateno
  • Yasutaka Kawasoe
  • Koichiro Niwa
Original Article


Arginine vasopressin (AVP), which induces vasoconstriction and conserves solute–free water when released during high plasma osmolality, is secreted through 2 mechanisms: osmoregulation and baroregulation. This study aims to clarify the mechanisms and influencing factors for non-osmotic AVP secretion in adult patients with congenital heart disease (CHD). AVP levels were measured in 74 adults with CHD. Non-osmotic AVP secretion was defined as excessive AVP secretion relative to the AVP level inferred from plasma osmolality. Accordingly, 10 patients (13.5%) demonstrated non-osmotic AVP secretion, with AVP levels higher than those in patients without non-osmotic AVP secretion (6.4 ± 3.1 vs. 1.6 ± 0.9 pg/ml; p < 0.0001). Non-osmotic AVP secretion was significantly correlated with diuretic use [odds ratio (OR) 7.227; confidence interval (CI) 1.743–29.962; p = 0.0006], HbA1c level (OR 11.812; CI 1.732–80.548; p = 0.012), and B-type natriuretic peptide (BNP) level (OR 1.007; CI 1.001–1.012; p = 0.022). Multiple logistic regression analysis revealed that there was a significant association between non-osmotic AVP secretion and HbA1c level (OR 9.958; 1.127–87.979; p = 0.0039), and a nearly significant relationship between non-osmotic AVP secretion and BNP (OR 1.006; CI 1.000–1.012; p = 0.056). In conclusion, this study showed that 13.5% of adult patients with CHD demonstrated non-osmotic AVP secretion, which could be correlated with heart failure and insulin resistance. The AVP system might be one of the mechanisms linking heart failure and the onset of type 2 diabetes mellitus in adults with CHD.


Arginine vasopressin Chronic heart failure Hemoglobin A1c Neurohormonal activation 



The authors would like to thank Enago ( for the English language review.

Compliance with ethical standards

Conflict of interest

The authors report no relationships that could be construed as a conflict of interest.


  1. 1.
    Hannon MJ, Thompson CJ (2016) Vasopressin, diabetes insipidus, and the syndrome of inappropriate antidiuresis. In: Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts JT, Weir GC (eds) Endocrinology: adult and pediatric, 7th edn. Saunders, Philadelphia, pp 298–311CrossRefGoogle Scholar
  2. 2.
    Robinson AG, Verbalis JG (2016) Posterior pituitary. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM (eds) Williams textbook of endocrinology, 13th edn. Elsevier, Philadelphia, pp 300–332Google Scholar
  3. 3.
    Goldsmith SR, Francis GS, Cowley AW Jr, Levine TB, Cohn JN (1983) Increased plasma arginine vasopressin levels in patients with congestive heart failure. J Am Coll Cardiol 1:1385–1390CrossRefGoogle Scholar
  4. 4.
    Price JF, Towbin JA, Denfield SW, Clunie S, Smith EO, McMahon CJ, Radovancevic B, Dreyer WJ (2004) Arginine vasopressin levels are elevated and correlate with functional status in infants and children with congestive heart failure. Circulation 109(2550):2553Google Scholar
  5. 5.
    Thompson CJ, Bland J, Burd J, Baylis PH (1986) The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin Sci 71:651–656CrossRefGoogle Scholar
  6. 6.
    Hartupee J, Mann DL (2017) Neurohormonal activation in heart failure with reduced eject fraction. Nat Rev Cardiol 14:30–38CrossRefGoogle Scholar
  7. 7.
    von Lueder TG, Kotecha D, Atar D, Hopper I (2017) Neurohormonal blockade in heart failure. Card Fail Rev 3:19–24CrossRefGoogle Scholar
  8. 8.
    Sacks DB, Arnold M, Bakris GL, Bruns DE, Horvath AR, Kirkman MS, Lernmark A, Metzger BE, Nathan DM (2011) Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin Chem 57:e1–e47CrossRefGoogle Scholar
  9. 9.
    Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknechit L, Pankow J, Coresh J, Brancati FL (2010) Glycated hemoglobin, diabetes and cardiovascular risk in nondiabetic adults. N Engl J Med 362:800–811CrossRefGoogle Scholar
  10. 10.
    Wannamethee SG, Welsh P, Papacosta O, Lennon L, Whincup PH, Sattar N (2015) Copeptin, insulin resistance, and risk of incident diabetes in older men. J Clin Endocrinol Metab 100:3332–3339CrossRefGoogle Scholar
  11. 11.
    Hiroyama M, Fujiwara Y, Nakamura K, Aoyagi T, Mizutani R, Sanbe A, Tasaki R, Tanoue A (2009) Altered lipid metabolism in vasopressin V1B receptor-deficient mice. Eur J Pharmacol. 602:455–461CrossRefGoogle Scholar
  12. 12.
    Spruce BA, McCulloch AJ, Burd J, Orskov H, Heaton A, Baylis PH, Alberti KG (1985) The effect of vasopressin infusion on glucose metabolism in man. Clin Endocrinol 22:463–468CrossRefGoogle Scholar
  13. 13.
    Oshikawa S, Tanoue A, Koshimizu TA, Kitagawa Y, Tsujimoto G (2004) Vasopressin stimulates insulin release from islet cells through V1b receptors: a combined pharmacological/knockout approach. Mol Pharmacol 65:623–629CrossRefGoogle Scholar
  14. 14.
    Küchler S, Perwitz N, Schick RR, Klein J, Westphal S (2010) Arginine-vasopressin directly promotes a thermogenic and pro-inflammatory adipokine expression profile in brown adipocytes. Regul Pept 164:126–132CrossRefGoogle Scholar
  15. 15.
    Bankir L, Bardoux P, Ahloulay M (2001) Vasopressin and diabetes mellitus. Nephron 87:8–18CrossRefGoogle Scholar
  16. 16.
    Paolisso G, De Riu S, Marrazzo G, Verza M, Varricchio M, D’Onofrio F (1991) Insulin resistance and hyperinsulinemia in patients with chronic congestive heart failure. Metabolism 40:972–977CrossRefGoogle Scholar
  17. 17.
    Swan JW, Anker SD, Walton C, Godsland IF, Clark AL, Leyva F, Stevenson JC, Coats AJ (1997) Insulin resistance in chronic heart failure: relation to severity and etiology of heart failure. J Am Coll Cardiol 30:527–532CrossRefGoogle Scholar
  18. 18.
    Swan JW, Walton C, Godsland IF, Clark AL, Coats AJ, Oliver MF (1994) Insulin resistance in chronic heart failure. Eur Heart J 15:1528–1532CrossRefGoogle Scholar
  19. 19.
    Madsen NL, Marino BS, Woo JG, Thomsen RW, Videbœk J, Laursen HB, Olsen M (2016) Congenital heart disease with and without cyanotic potential and the long-term risk of diabetes mellitus: a population-based follow-up study. J Am Heart Assoc 5:e003076CrossRefGoogle Scholar
  20. 20.
    Ohuchi H, Miyamoto Y, Yamamoto M, Ishihara H, Takata H, Miyazaki A, Yamada O, Yagihara T (2009) High prevalence of abnormal glucose metabolism in young adult patients with complex congenital heart disease. Am Heart J 158:30–39CrossRefGoogle Scholar
  21. 21.
    Martínez-Quintana E, Rodríguez-González F, Nieto-Lago V, Nóvoa FJ, López-Rios L, Riaño-Ruiz M (2010) Serum glucose and lipid levels in adult congenital heart disease patients. Metabolism 59:1642–1648CrossRefGoogle Scholar
  22. 22.
    Shiina Y, Murakami T, Matsumoto N, Okamura D, Takahashi Y, Nishihata Y, Komiyama N, Niwa K (2018) Body composition, appetite–related hormones, adipocytokines, and heart failure in adult patients with congenital heart disease: a preliminary study. Congenit Heart Dis 13:79–84CrossRefGoogle Scholar
  23. 23.
    Marelli AJ, Mackie AS, Ionescu-Ittu R, Tahme E, Pilote L (2007) Congenital heart disease in the general population: changing prevalence and age distribution. Circulation 115:163–172CrossRefGoogle Scholar
  24. 24.
    Shiina Y, Toyoda T, Kawasoe Y, Tateno S, Shirai T, Wakisaka Y, Matsuo K, Mizuno Y, Terai M, Hamada H, Niwa K (2011) Prevalence of adult patients with congenital heart disease in Japan. Int J Cardiol 146:13–16CrossRefGoogle Scholar
  25. 25.
    Afilalo J, Therrien J, Pilote L, Ionescu-Ittu R, Martucci G, Marelli AJ (2011) Geriatric congenital heart disease: burden of disease and predictors of mortality. J Am Coll Cardiol 58:1509–1515CrossRefGoogle Scholar
  26. 26.
    McGuire DK, Inzucchi SE, Marx N (2019) Diabetes and the cardiovascular system. In: Zipes DP, Libby P, Bonow RO, Mann DL, Tomaselli GF, Braunwald E (eds) Braunwald’s heart disease: a textbook of cardiovascular medicine, 11th edn. Elsevier, Philadelphia, pp 1007–1031Google Scholar
  27. 27.
    Nilsson PM (2008) Early vascular aging (EVA): consequences and prevention. Vasc Health Risk Manag 4:547–552CrossRefGoogle Scholar
  28. 28.
    Nilsson PM (2015) Early vascular ageing—a concept in development. Eur Endocrinol 11:26–31CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of CardiologyChiba Children’S HospitalChibaJapan
  2. 2.Department of PediatricsChiba Cardiovascular CenterIchiharaJapan
  3. 3.Department of CardiologySt Luke International HospitalTokyoJapan

Personalised recommendations