Advertisement

Heart and Vessels

, Volume 34, Issue 3, pp 509–516 | Cite as

Endothelial damage and thromboembolic risk after pulmonary vein isolation using the latest ablation technologies: a comparison of the second-generation cryoballoon vs. contact force-sensing radiofrequency ablation

  • Kaori Hisazaki
  • Kanae Hasegawa
  • Kenichi Kaseno
  • Shinsuke MiyazakiEmail author
  • Naoki Amaya
  • Yuichiro Shiomi
  • Naoto Tama
  • Hiroyuki Ikeda
  • Yoshitomo Fukuoka
  • Tetsuji Morishita
  • Kentaro Ishida
  • Hiroyasu Uzui
  • Hiroshi Tada
Original Article
  • 171 Downloads

Abstract

Experimental data suggest that cryoenergy is associated with less endothelial damage and thrombus formation than radiofrequency energy. This study aimed to compare the impact of pulmonary vein isolation (PVI) on the endothelial damage, myocardial damage, inflammatory response, and prothrombotic state between the two latest technologies, second-generation cryoballoon (CB2) and contact force-sensing radiofrequency catheter (CFRF) ablation. Eighty-six paroxysmal atrial fibrillation (AF) patients (55 men; 65 ± 12 years) underwent PVI with either the CB2 (n = 64) or CFRF (n = 22). Markers of the endothelial damage (l-arginine/asymmetric dimethylarginine [ADMA]), myocardial injury (creatine kinase-MB [CK-MB], troponin-T, and troponin-I), inflammatory response (high-sensitive C-reactive protein), and prothrombotic state (D-dimer, soluble fibrin monomer complex, and thrombin–antithrombin complex) were determined before and up to 24-h post-procedure. The total application time was shorter (1,460 ± 287 vs. 2,395 ± 571 [sec], p < 0.01) and total procedure time tended to be shorter (199 ± 37 vs. 218 ± 38 [min], p = 0.06) with CB2 than CFRF ablation. The amount of myocardial injury was greater (CK-MB: 45 ± 17 vs. 11 ± 3 [IU/l], p < 0.01) with CB2 than CFRF ablation. The l-arginine/ADMA ratio was lower (160 ± 51 vs. 194 ± 38, p = 0.028) after CB2 than CFRF ablation. Inflammatory and all prothrombotic markers were significantly elevated post-ablation; however, the magnitude was similar between the two groups. During a mean follow-up of 20 ± 6 months, the single-procedure AF freedom was similar between the CB2 and CFRF groups (60/64 vs. 20/22, p = 0.82). CB2-PVI produces significantly lesser endothelial damage with greater myocardial injury than CFRF-PVI; however, similar anticoagulant regimens are required during the peri-procedural periods in both technologies.

Keywords

Pulmonary vein isolation Endothelial damage Atrial fibrillation Cryoballoon 

Notes

Acknowledgements

We thank Mr. John Martin for his help in the preparation of the manuscript. This work was supported by a grant from intramural research funds (25-4-7) for cardiovascular disease from the National Cerebral and Cardiovascular Center, Osaka, Japan (to H. T.).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Haïssaguerre M, Jaïs P, Shah DC, Garrigue S, Takahashi A, Lavergne T, Hocini M, Peng JT, Roudaut R, Clémenty J (2000) Electrophysiological end point for catheter ablation of atrial fibrillation initiated from multiple pulmonary venous foci. Circulation 101:1409–1417CrossRefGoogle Scholar
  2. 2.
    Calkins H, Hindricks G, Cappato R, Kim YH, Saad EB, Aguinaga L, Akar JG, Badhwar V, Brugada J, Camm J, Chen PS, Chen SA, Chung MK, Nielsen JC, Curtis AB, Davies DW, Day JD, d’Avila A, de Groot NMSN, Di Biase L, Duytschaever M, Edgerton JR, Ellenbogen KA, Ellinor PT, Ernst S, Fenelon G, Gerstenfeld EP, Haines DE, Haissaguerre M, Helm RH, Hylek E, Jackman WM, Jalife J, Kalman JM, Kautzner J, Kottkamp H, Kuck KH, Kumagai K, Lee R, Lewalter T, Lindsay BD, Macle L, Mansour M, Marchlinski FE, Michaud GF, Nakagawa H, Natale A, Nattel S, Okumura K, Packer D, Pokushalov E, Reynolds MR, Sanders P, Scanavacca M, Schilling R, Tondo C, Tsao HM, Verma A, Wilber DJ, Yamane T (2017) 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. J Arrhythm 33:369–409CrossRefGoogle Scholar
  3. 3.
    Kojodjojo P, O’Neill MD, Lim PB, Malcolm-Lawes L, Whinnett ZI, Salukhe TV, Linton NW, Lefroy D, Mason A, Wright I, Peters NS, Kanagaratnam P, Davies DW (2010) Pulmonary venous isolation by antral ablation with a large cryoballoon for treatment of paroxysmal and persistent atrial fibrillation: medium-term outcomes and non-randomised comparison with pulmonary venous isolation by radiofrequency ablation. Heart 96:1379–1384CrossRefGoogle Scholar
  4. 4.
    Kuck KH, Brugada J, Fürnkranz A, Metzner A, Ouyang F, Chun KR, Elvan A, Arentz T, Bestehorn K, Pocock SJ, Albenque JP, Tondo C (2016) Fire and ice investigators. Cryoballoon or radiofrequency ablation for paroxysmal atrial fibrillation. N Engl J Med 374:2235–2245CrossRefGoogle Scholar
  5. 5.
    Coulombe N, Paulin J, Su W (2013) Improved in vivo performance of second-generation cryoballoon for pulmonary vein isolation. J Cardiovasc Electrophysiol 24:919–925CrossRefGoogle Scholar
  6. 6.
    Reddy VY, Shah D, Kautzner J, Schmidt B, Saoudi N, Herrera C, Jaïs P, Hindricks G, Peichl P, Yulzari A, Lambert H, Neuzil P, Natale A, Kuck KH (2012) The relationship between contact force and clinical outcome during radiofrequency catheter ablation of atrial fibrillation in the TOCCATA study. Heart Rhythm 9:1789–1795CrossRefGoogle Scholar
  7. 7.
    Schmidt M, Dorwarth U, Andresen D, Brachmann J, Kuck KH, Kuniss M, Lewalter T, Spitzer S, Willems S, Senges J, Jünger C, Hoffmann E (2014) Cryoballoon versus RF ablation in paroxysmal atrial fibrillation: results from the German Ablation Registry. J Cardiovasc Electrophysiol 25:1–7CrossRefGoogle Scholar
  8. 8.
    Ma J, Cheng G, Xu G, Lu X (2006) Effect of radiofrequency catheter ablation on endothelial function and oxidative stress. Acta Cardiol 61:339–342CrossRefGoogle Scholar
  9. 9.
    Khairy P, Chauvet P, Lehmann J, Lambert J, Macle L, Tanguay JF, Sirois MG, Santoianni D, Dubuc M (2003) Lower incidence of thrombus formation with cryoenergy versus radiofrequency catheter ablation. Circulation 107:2045–2050CrossRefGoogle Scholar
  10. 10.
    Parizek P, Haman L, Pleskot M, Pecka M, Bukac J, Stransky P, Maly J (2011) Hemostatic changes before and during electrophysiologic study and radiofrequency catheter ablation. Int J Hematol 93:452–457CrossRefGoogle Scholar
  11. 11.
    Avitall B, Kalinski A (2015) Cryotherapy of cardiac arrhythmia: from basic science to the bedside. Heart Rhythm 12:2195–2203CrossRefGoogle Scholar
  12. 12.
    van Oeveren W, Crijns HJ, Korteling BJ, Wegereef EW, Haan J, Tigchelaar I, Hoekstra A (1999) Blood damage, platelet and clotting activation during application of radiofrequency or cryoablation catheters: a comparative in vitro study. J Med Eng Technol 23:20–25CrossRefGoogle Scholar
  13. 13.
    Issac TT, Dokainish H, Lakkis NM (2007) Role of inflammation in initiation and perpetuation of atrial fibrillation: a systematic review of the published data. J Am Coll Cardiol 50:2021–2028CrossRefGoogle Scholar
  14. 14.
    Stuhlinger MC, Oka RK, Graf EE, Schmölzer I, Upson BM, Kapoor O, Szuba A, Malinow MR, Wascher TC, Pachinger O, Cooke JP (2003) Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine. Circulation 108:933–938CrossRefGoogle Scholar
  15. 15.
    Stamler J, Mendelsohn ME, Amarante P, Smick D, Andon N, Davies PF, Cooke JP, Loscalzo J (1989) N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res 65:789–795CrossRefGoogle Scholar
  16. 16.
    Eid HM, Eritsland J, Larsen J, Arnesen H, Seljeflot I (2003) Increased levels of asymmetric dimethylarginine in populations at risk for atherosclerotic disease. Effects of pravastatin. Atherosclerosis 166:279–284CrossRefGoogle Scholar
  17. 17.
    Eid HM, Arnesen H, Hjerkinn EM, Lyberg T, Seljeflot I (2004) Relationship between obesity, smoking, and the endogenous nitric oxide synthase inhibitor, asymmetric dimethylarginine. Metabolism 53:1574–1579CrossRefGoogle Scholar
  18. 18.
    Cai H, Li Z, Goette A, Mera F, Honeycutt C, Feterik K, Wilcox JN, Dudley SC Jr, Harrison DG, Langberg JJ (2002) Downregulation of endocardial nitric oxide synthase expression and nitric oxide production in atrial fibrillation: potential mechanisms for atrial thrombosis and stroke. Circulation 106:2854–2858CrossRefGoogle Scholar
  19. 19.
    Yang L, Xiufen Q, Shuqin S, Yang Y, Ying S, Yanwei Y, Wei F, Dechun Y (2011) Asymmetric dimethylarginine concentration and recurrence of atrial tachyarrythmias after catheter ablation in patients with persistent atrial fibrillation. J Interv Card Electrophysiol 32:147–154CrossRefGoogle Scholar
  20. 20.
    Lim HS, Willoughby SR, Schultz C, Gan C, Alasady M, Lau DH, Leong DP, Brooks AG, Young GD, Kistler PM, Kalman JM, Worthley MI, Sanders P (2013) Effect of atrial fibrillation on atrial thrombogenesis in humans: impact of rate and rhythm. J Am Coll Cardiol 61:852–860CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Kaori Hisazaki
    • 1
  • Kanae Hasegawa
    • 1
  • Kenichi Kaseno
    • 1
  • Shinsuke Miyazaki
    • 1
    Email author
  • Naoki Amaya
    • 1
  • Yuichiro Shiomi
    • 1
  • Naoto Tama
    • 1
  • Hiroyuki Ikeda
    • 1
  • Yoshitomo Fukuoka
    • 1
  • Tetsuji Morishita
    • 1
  • Kentaro Ishida
    • 1
  • Hiroyasu Uzui
    • 1
  • Hiroshi Tada
    • 1
  1. 1.Department of Cardiovascular Medicine, Faculty of Medical SciencesUniversity of FukuiYoshida-GunJapan

Personalised recommendations