Advertisement

Heart and Vessels

, Volume 34, Issue 2, pp 318–323 | Cite as

Preoperative endothelial function and long-term cardiovascular events in patients undergoing cardiovascular surgery

  • Yuichi SaitoEmail author
  • Hideki Kitahara
  • Goro Matsumiya
  • Yoshio Kobayashi
Original Article
  • 47 Downloads

Abstract

We recently reported that preoperative endothelial dysfunction [i.e., reactive hyperemia index (RHI) ≤ 1.64] predicted short-term postoperative adverse events in patients undergoing cardiovascular surgery. However, the relationship between preoperative RHI and long-term cardiovascular risk in these patients is unclear. A total of 195 patients with at least 1-year follow-up who underwent cardiovascular surgery were included. Preoperative endothelial function was assessed by RHI. The primary outcome was a composite of cardiac death, stroke, myocardial infarction, rehospitalization due to heart failure, and any coronary revascularization. Nineteen patients (9.7%) met the primary outcome, including cardiac death (n = 7), stroke (n = 5), heart failure (n = 9), and coronary revascularization (n = 2) during a median follow-up of 20 months. There was no significant difference in the baseline characteristics between patients with RHI ≤ 1.64 (n = 86) and those with RHI > 1.64 (n = 109). The primary outcome occurred in 13 patients with RHI ≤ 1.64 (15.1%) and in 6 patients with RHI > 1.64 (5.5%). Kaplan–Meier analysis demonstrated a significantly higher incidence of the primary outcome in patients with RHI ≤ 1.64 compared to their counterpart (hazard ratio 2.94; 95% confidence interval 1.12–7.75; p = 0.02). Multivariate analysis showed diabetes and RHI ≤ 1.64 as independent predictors for the primary outcome. In conclusion, preoperative endothelial dysfunction assessed by RHI was associated with long-term cardiovascular events in patients undergoing cardiovascular surgery.

Keywords

Cardiovascular surgery Endothelial function Reactive hyperemia index Outcome 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Motomura N, Miyata H, Tsukihara H, Takamoto S (2008) Risk model of thoracic aortic surgery in 4707 cases from a nationwide single-race population through a web-based data entry system: the first report of 30-day and 30-day operative outcome risk models for thoracic aortic surgery. Circulation 118:S153–S159CrossRefGoogle Scholar
  2. 2.
    Nashef SA, Roques F, Sharples LD, Nilsson J, Smith C, Goldstone AR, Lockowandt U (2012) EuroSCORE II. Eur J Cardiothorac Surg 41:734–744CrossRefGoogle Scholar
  3. 3.
    Miyata H, Motomura N, Tsukihara H, Takamoto S (2011) Risk models including high-risk cardiovascular procedures: clinical predictors of mortality and morbidity. Eur J Cardiothorac Surg 39:667–674CrossRefGoogle Scholar
  4. 4.
    Saito A, Motomura N, Miyata H, Takamoto S, Kyo S, Ono M (2011) Age-specific risk stratification in 13488 isolated coronary artery bypass grafting procedures. Interact Cardiovasc Thorac Surg 12:575–580CrossRefGoogle Scholar
  5. 5.
    Hansen LS, Sloth E, Hjortdal VE, Jakobsen CJ (2015) Follow-up after cardiac surgery should be extended to at least 120 days when benchmarking cardiac surgery centers. J Cardiothorac Vasc Anesth 29:984–989CrossRefGoogle Scholar
  6. 6.
    Gokce N, Keaney JF Jr, Hunter LM, Watkins MT, Nedeljkovic ZS, Menzoian JO, Vita JA (2003) Predictive value of noninvasively determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. J Am Coll Cardiol 41:1769–1775CrossRefGoogle Scholar
  7. 7.
    Yeboah J, Crouse JR, Hsu FC, Burke GL, Herrington DM (2007) Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: the cardiovascular health study. Circulation 115:2390–2397CrossRefGoogle Scholar
  8. 8.
    Rubinshtein R, Kuvin JT, Soffler M, Lennon RJ, Lavi S, Nelson RE, Pumper GM, Lerman LO, Lerman A (2010) Assessment of endothelial function by non-invasive peripheral arterial tonometry predicts late cardiovascular adverse events. Eur Heart J 31:1142–1148CrossRefGoogle Scholar
  9. 9.
    Suzuki H, Matsuzawa Y, Konishi M, Akiyama E, Takano K, Nakayama N, Kataoka S, Ebina T, Kosuge M, Hibi K, Tsukahara K, Iwahashi N, Endo M, Maejima N, Shinohara K, Taki N, Mitsugi N, Taguri M, Sugiyama S, Ogawa H, Umemura S, Kimura K (2014) Utility of noninvasive endothelial function test for prediction of deep vein thrombosis after total hip or knee arthroplasty. Circ J 78:1723–1732CrossRefGoogle Scholar
  10. 10.
    Schier R, Hinkelbein J, Marcus H, Mehran R, El-Zein R, Hofstetter W, Swafford J, Riedel B (2012) Preoperative microvascular dysfunction: a prospective, observational study expanding risk assessment strategies in major thoracic surgery. Ann Thorac Surg 94:226–233CrossRefGoogle Scholar
  11. 11.
    Saito Y, Kitahara H, Matsumiya G, Kobayashi Y (2017) Preoperative assessment of endothelial function for prediction of adverse events after cardiovascular surgery. Circ J 82:118–122CrossRefGoogle Scholar
  12. 12.
    Kuvin JT, Patel AR, Sliney KA, Pandian NG, Sheffy J, Schnall RP, Karas RH, Udelson JE (2003) Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am Heart J 146:168–174CrossRefGoogle Scholar
  13. 13.
    Matsuzawa Y, Sugiyama S, Sumida H, Sugamura K, Nozaki T, Ohba K, Matsubara J, Kurokawa H, Fujisue K, Konishi M, Akiyama E, Suzuki H, Nagayoshi Y, Yamamuro M, Sakamoto K, Iwashita S, Jinnouchi H, Taguri M, Morita S, Matsui K, Kimura K, Umemura S, Ogawa H (2013) Peripheral endothelial function and cardiovascular events in high-risk patients. J Am Heart Assoc 2:e000426CrossRefGoogle Scholar
  14. 14.
    Akiyama E, Sugiyama S, Matsuzawa Y, Konishi M, Suzuki H, Nozaki T, Ohba K, Matsubara J, Maeda H, Horibata Y, Sakamoto K, Sugamura K, Yamamuro M, Sumida H, Kaikita K, Iwashita S, Matsui K, Kimura K, Umemura S, Ogawa H (2012) Incremental prognostic significance of peripheral endothelial dysfunction in patients with heart failure with normal left ventricular ejection fraction. J Am Coll Cardiol 60:1778–1786CrossRefGoogle Scholar
  15. 15.
    Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD (2012) Third universal definition of myocardial infarction. Circulation 126:2020–2035CrossRefGoogle Scholar
  16. 16.
    Widlansky ME, Gokce N, Keaney JF Jr, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42:1149–1160CrossRefGoogle Scholar
  17. 17.
    Yau JW, Teoh H, Verma S (2015) Endothelial cell control of thrombosis. BMC Cardiovasc Disord 15:130CrossRefGoogle Scholar
  18. 18.
    Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, Kass DA (2006) Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation 114:2138–2147CrossRefGoogle Scholar
  19. 19.
    Huynh K (2017) Inflammation: Targeting inflammatory pathways to treat atherosclerosis and cancer. Nat Rev Cardiol 14:629CrossRefGoogle Scholar
  20. 20.
    Selamet Tierney ES, Newburger JW, Gauvreau K, Geva J, Coogan E, Colan SD, de Ferranti SD (2009) Endothelial pulse amplitude testing: feasibility and reproducibility in adolescents. J Pediatr 154:901–905CrossRefGoogle Scholar
  21. 21.
    Bonetti PO, Pumper GM, Higano ST, Holmes DR Jr, Kuvin JT, Lerman A (2004) Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J Am Coll Cardiol 44:2137–2141CrossRefGoogle Scholar
  22. 22.
    Sauder KA, West SG, McCrea CE, Campbell JM, Jenkins AL, Jenkins DJ, Kendall CW (2014) Test–retest reliability of peripheral arterial tonometry in the metabolic syndrome. Diab Vasc Dis Res 11:201–207CrossRefGoogle Scholar
  23. 23.
    Gokce N (2011) Clinical assessment of endothelial function: ready for prime time? Circ Cardiovasc Imaging 4:348–350CrossRefGoogle Scholar
  24. 24.
    Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Lerman A (2015) Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: a systematic review and meta-analysis. J Am Heart Assoc 4:e002270CrossRefGoogle Scholar
  25. 25.
    Stone GW, Sabik JF, Serruys PW, Simonton CA, Généreux P, Puskas J, Kandzari DE, Morice MC, Lembo N, Brown WM 3rd, Taggart DP, Banning A, Merkely B, Horkay F, Boonstra PW, van Boven AJ, Ungi I, Bogáts G, Mansour S, Noiseux N, Sabaté M, Pomar J, Hickey M, Gershlick A, Buszman P, Bochenek A, Schampaert E, Pagé P, Dressler O, Kosmidou I, Mehran R, Pocock SJ, Kappetein AP, Trial Investigators EXCEL (2016) Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med 375:2223–2225CrossRefGoogle Scholar
  26. 26.
    Kitta Y, Obata JE, Nakamura T, Hirano M, Kodama Y, Fujioka D, Saito Y, Kawabata K, Sano K, Kobayashi T, Yano T, Nakamura K, Kugiyama K (2009) Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. J Am Coll Cardiol 53:323–330CrossRefGoogle Scholar
  27. 27.
    Matsuzawa Y, Sugiyama S, Sugamura K, Sumida H, Kurokawa H, Fujisue K, Konishi M, Akiyama E, Suzuki H, Nakayama N, Yamamuro M, Iwashita S, Jinnouchi H, Kimura K, Umemura S, Ogawa H (2013) Successful diet and exercise therapy as evaluated on self-assessment score significantly improves endothelial function in metabolic syndrome patients. Circ J 77:2807–2815CrossRefGoogle Scholar
  28. 28.
    Shahin Y, Khan JA, Samuel N, Chetter I (2011) Angiotensin converting enzyme inhibitors effect on endothelial dysfunction: a meta-analysis of randomised controlled trials. Atherosclerosis 216:7–16CrossRefGoogle Scholar
  29. 29.
    Dupuis J, Tardif JC, Cernacek P, Théroux P (1999) Cholesterol reduction rapidly improves endothelial function after acute coronary syndromes. The RECIFE (reduction of cholesterol in ischemia and function of the endothelium) trial. Circulation 99:3227–3233CrossRefGoogle Scholar
  30. 30.
    Parikh CR, Puthumana J, Shlipak MG, Koyner JL, Thiessen-Philbrook H, McArthur E, Kerr K, Kavsak P, Whitlock RP, Garg AX, Coca SG (2017) Relationship of kidney injury biomarkers with long-term cardiovascular outcomes after cardiac surgery. J Am Soc Nephrol 28:3699–3707CrossRefGoogle Scholar
  31. 31.
    Hamburg NM, Palmisano J, Larson MG, Sullivan LM, Lehman BT, Vasan RS, Levy D, Mitchell GF, Vita JA, Benjamin EJ (2011) Relation of brachial and digital measures of vascular function in the community: the Framingham heart study. Hypertension 57:390–396CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Yuichi Saito
    • 1
    Email author
  • Hideki Kitahara
    • 1
  • Goro Matsumiya
    • 2
  • Yoshio Kobayashi
    • 1
  1. 1.Department of Cardiovascular MedicineChiba University Graduate School of MedicineChibaJapan
  2. 2.Department of Cardiovascular SurgeryChiba University Graduate School of MedicineChibaJapan

Personalised recommendations