Advertisement

Heart and Vessels

, Volume 34, Issue 2, pp 208–217 | Cite as

Comparison between minimum lumen cross-sectional area and intraluminal ultrasonic intensity analysis using integrated backscatter intravascular ultrasound for prediction of functionally significant coronary artery stenosis

  • Hironori Takami
  • Shinjo SonodaEmail author
  • Yoshitaka Muraoka
  • Toshiya Miura
  • Akiyoshi Shimizu
  • Reo Anai
  • Yoshinori Sanuki
  • Tetsu Miyamoto
  • Yasushi Oginosawa
  • Yoshihisa Fujino
  • Yuki Tsuda
  • Masaru Araki
  • Yutaka Otsuji
Original Article
  • 87 Downloads

Abstract

Intravascular ultrasound (IVUS)-derived minimum lumen cross-sectional area (MLA) is useful to predict myocardial ischemia using fractional flow reserve (FFR). Recent studies reported an increase in the intraluminal ultrasonic integrated backscatter (IB) value using IVUS across the coronary artery stenosis (CAS) was significantly correlated with FFR. However, these details have not been fully understood. We evaluated the utility of intraluminal IB analysis for predicting myocardial ischemia based on FFR measurements by comparing that with conventional IVUS-derived MLA. A total of 65 patients with 75 intermediate lesions underwent both FFR and IB-IVUS simultaneously were analyzed. We measured IVUS-derived MLA and intraluminal IB value at the coronary ostial site, 5 mm distal site to the CAS, and far distal site, which is the same as the position of the pressure wire sensor. The increase in IB values was calculated as the distal IB value − the ostial IB value (focal ∆IB) and the far distal IB value − the ostial IB value (total ∆IB). MLA did not show a significant correlation with FFR (p = 0.13); however, focal ∆IB and total ∆IB showed significant correlations with FFR (p = 0.008 and p < 0.001, respectively). The receiver operating characteristic curve analysis shows that the best cut-off value of focal ∆IB and total ∆IB was 8 and 14, respectively. Although the diagnostic abilities to predict FFR ≤ 0.75 among IVUS-derived MLA ≤ 3.0 mm2, focal ∆IB ≥ 8, and total ∆IB ≥ 14 were similar, a multivariate analysis showed that total ∆IB was the most useful index (p < 0.001). In conclusion, total ∆IB, which is measured at the same as the position of FFR measurement, might be useful for functional assessment of intermediate CAS.

Keywords

Coronary artery stenosis Integrated backscatter intravascular ultrasound Fractional flow reserve Minimum lumen area 

Notes

Acknowledgements

We have no financial or other relations that could lead to conflict of interest.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.

References

  1. 1.
    Iwasaki K (2014) Myocardial ischemia is a key factor in the management of stable coronary artery disease. World J Cardiol 6:130–139CrossRefGoogle Scholar
  2. 2.
    Park SJ, Ahn JM (2012) Should we be using fractional flow reserve more routinely to select stable coronary patients for percutaneous coronary intervention? Curr Opin Cardiol 27:675–681CrossRefGoogle Scholar
  3. 3.
    Curzen N, Rana O, Nicholas Z, Golledge P, Zaman A, Oldroyd K, Hanratty C, Banning A, Wheatcroft S, Hobson A, Chitkara K, Hildick-Smith D, McKenzie D, Calver A, Dimitrov BD, Corbett S (2014) Does routine pressure wire assessment influence management strategy at coronary angiography for diagnosis of chest pain?: the RIPCORD study. Circ Cardiovasc Interv 7:248–255CrossRefGoogle Scholar
  4. 4.
    Pijls NH, De Bruyne B, Peels K, Van Der Voort PH, Bonnier HJ, Bartunek JKJJ, Koolen JJ (1996) Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 334:1703–1708CrossRefGoogle Scholar
  5. 5.
    Pijls NH, van Schaardenburgh P, Manoharan G, Boersma E, Bech JW, van’t Veer M, Bar F, Hoorntje J, Koolen J, Wijns W, de Bruyne B (2007) Percutaneous coronary intervention of functionally nonsignificant stenosis: 5-year follow-up of the DEFER Study. J Am Coll Cardiol 49:2105–2111CrossRefGoogle Scholar
  6. 6.
    Jang JS, Song YJ, Kang W, Jin HY, Seo JS, Yang TH, Kim DK, Cho KI, Kim BH, Park YH, Je HG, Kim DS (2014) Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis. JACC Cardiovasc Interv 7:233–243CrossRefGoogle Scholar
  7. 7.
    Takagi K, Shannon J, Basavarajaiah S, Latib A, Al-Lamee R, Hasegawa T, Godino C, Ferraro M, Figini F, Carlino M, Montorfano M, Chieffo A, Colombo A (2013) Discrepancies in vessel sizing between angiography and intravascular ultrasound varies according to the vessel evaluated. Int J Cardiol 168:3791–3796CrossRefGoogle Scholar
  8. 8.
    Calvert PA, Obaid DR, O’Sullivan M, Shapiro LM, McNab D, Densem CG, Schofield PM, Braganza D, Clarke SC, Ray KK, West NE, Bennett MR (2011) Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc Imaging 4:894–901CrossRefGoogle Scholar
  9. 9.
    Takagi A, Tsurumi Y, Ishii Y, Suzuki K, Kawana M, Kasanuki H (1999) Clinical potential of intravascular ultrasound for physiological assessment of coronary stenosis: relationship between quantitative ultrasound tomography and pressure-derived fractional flow reserve. Circulation 100:250–255CrossRefGoogle Scholar
  10. 10.
    Cho YK, Nam CW, Han JK, Koo BK, Doh JH, Ben-Dor I, Waksman R, Pichard A, Murata N, Tanaka N, Lee CH, Gonzalo N, Escaned J, Costa MA, Kubo T, Akasaka T, Hu X, Wang JA, Yang HM, Yoon MH, Tahk SJ, Yoon HJ, Chung IS, Hur SH, Kim KB (2015) Usefulness of combined intravascular ultrasound parameters to predict functional significance of coronary artery stenosis and determinants of mismatch. EuroIntervention 11:163–170CrossRefGoogle Scholar
  11. 11.
    Ando H, Suzuki A, Sakurai S, Kumagai S, Kurita A, Waseda K, Takashima H, Amano T (2017) Tissue characteristics of neointima in late restenosis: integrated backscatter intravascular ultrasound analysis for in-stent restenosis. Heart Vessels 32:531–538CrossRefGoogle Scholar
  12. 12.
    Takahashi S, Kawasaki M, Miyata S, Suzuki K, Yamaura M, Ido T, Aoyama T, Fujiwara H, Minatoguchi S (2016) Feasibility of tissue characterization of coronary plaques using 320-detector row computed tomography: comparison with integrated backscatter intravascular ultrasound. Heart Vessels 31:29–37CrossRefGoogle Scholar
  13. 13.
    Nozue T, Fukui K, Koyama Y, Fujii H, Kunishima T, Hikita H, Hibi K, Miyazawa A, Michishita I (2016) Effects of sitagliptin on coronary atherosclerosis evaluated using integrated backscatter intravascular ultrasound in patients with type 2 diabetes: rationale and design of the TRUST study. Heart Vessels 31:649–654CrossRefGoogle Scholar
  14. 14.
    Yuan YW, Shung KK (1988) Ultrasonic backscatter from flowing whole blood. I: dependence on shear rate and hematocrit. J Acoust Soc Am 84:52–58CrossRefGoogle Scholar
  15. 15.
    Tanno J, Nakano S, Kasai T, Ako J, Nakamura S, Senbonmatsu T, Nishimura S (2015) Increase in ultrasonic intensity of blood speckle across moderate coronary artery stenosis is an independent predictor of functional coronary artery stenosis measured by fractional flow reserve: pilot study. PLoS One 10:e0116727CrossRefGoogle Scholar
  16. 16.
    Saito Y, Kitahara H, Nakayama T, Fujimoto Y, Kobayashi Y (2017) Diagnostic accuracy of intraluminal blood speckle intensity on intravascular ultrasound for physiological assessment of coronary artery stenosis. Coron Artery Dis 28:145–150CrossRefGoogle Scholar
  17. 17.
    Takami H, Sonoda S, Muraoka Y, Sanuki Y, Kashiyama K, Fukuda S, Oginosawa Y, Tsuda Y, Araki M, Otsuji Y (2017) Impact of additional intracoronary nicorandil administration during fractional flow reserve measurement with intravenous adenosine 5′-triphosphate infusion. J Cardiol 69:119–124CrossRefGoogle Scholar
  18. 18.
    Sano K, Kawasaki M, Okubo M, Yokoyama H, Ito Y, Murata I, Kawai T, Tsuchiya K, Nishigaki K, Takemura G, Minatoguchi S, Zhou X, Fujita H, Fujiwara H (2005) In vivo quantitative tissue characterization of angiographically normal coronary lesions and the relation with risk factors: a study using integrated backscatter intravascular ultrasound. Circ J 69:543–549CrossRefGoogle Scholar
  19. 19.
    Komura N, Hibi K, Kusama I, Otsuka F, Mitsuhashi T, Endo M, Iwahashi N, Okuda J, Tsukahara K, Kosuge M, Ebina T, Umemura S, Kimura K (2010) Plaque location in the left anterior descending coronary artery and tissue characteristics in angina pectoris: an integrated backscatter intravascular ultrasound study. Circ J 74:142–147CrossRefGoogle Scholar
  20. 20.
    Kawasaki M, Hattori A, Ishihara Y, Okubo M, Nishigaki K, Takemura G, Saio M, Takami T, Minatoguchi S (2010) Tissue characterization of coronary plaques and assessment of thickness of fibrous cap using integrated backscatter intravascular ultrasound. Comparison with histology and optical coherence tomography. Circ J 74:2641–2648CrossRefGoogle Scholar
  21. 21.
    Waksman R, Legutko J, Singh J, Orlando Q, Marso S, Schloss T, Tugaoen J, DeVries J, Palmer N, Haude M, Swymelar S, Torguson R (2013) FIRST: fractional flow reserve and intravascular ultrasound relationship study. J Am Coll Cardiol 61:917–923CrossRefGoogle Scholar
  22. 22.
    Koo BK, Yang HM, Doh JH, Choe H, Lee SY, Yoon CH, Cho YK, Nam CW, Hur SH, Lim HS, Yoon MH, Park KW, Na SH, Youn TJ, Chung WY, Ma S, Park SK, Kim HS, Tahk SJ (2011) Optimal intravascular ultrasound criteria and their accuracy for defining the functional significance of intermediate coronary stenoses of different locations. JACC Cardiovasc Interv 4:803–811CrossRefGoogle Scholar
  23. 23.
    Kang SJ, Lee JY, Ahn JM, Song HG, Kim WJ, Park DW, Yun SC, Lee SW, Kim YH, Mintz GS, Lee CW, Park SW, Park SJ (2011) Intravascular ultrasound-derived predictors for fractional flow reserve in intermediate left main disease. JACC Cardiovasc Interv 4:1168–1174CrossRefGoogle Scholar
  24. 24.
    Sigel B, Machi J, Beitler JC, Justin JR (1983) Red cell aggregation as a cause of blood-flow echogenicity. Radiology 148:799–802CrossRefGoogle Scholar
  25. 25.
    Huang CC (2009) Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow. IEEE Trans Ultrason Ferroelectr Freq Control 56:1677–1688CrossRefGoogle Scholar
  26. 26.
    Shung KK, Cloutier G, Lim CC (1992) The effects of hematocrit, shear rate, and turbulence on ultrasonic Doppler spectrum from blood. IEEE Trans Biomed Eng 39:462–469CrossRefGoogle Scholar
  27. 27.
    van de Hoef TP, Siebes M, Spaan JA, Piek JJ (2015) Fundamentals in clinical coronary physiology: why coronary flow is more important than coronary pressure. Eur Heart J 36:3312–3319aCrossRefGoogle Scholar
  28. 28.
    van de Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JA, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 10:439–452CrossRefGoogle Scholar
  29. 29.
    Badeer HS (2001) Hemodynamics for medical students. Adv Physiol Educ 25:44–52CrossRefGoogle Scholar
  30. 30.
    Sen S, Escaned J, Malik IS, Mikhail GW, Faole RA, Mila R, Tarkin J, Petraco R, Broyd C, Jabbour R, Sethi A, Baker CS, Bellamy M, Al-Bustami M, Hackett D, Khan M, Lefroy D, Parker KH, Hughes AD, Francis DP, Mario CD, Mayet JM, Davied JE (2012) Development and validation of a new adenosine-independent index of stenosis severity from coronary wave-intensity analysis. J Am Coll Cardiol 59:1392–1402CrossRefGoogle Scholar
  31. 31.
    Authors/Task Force Members, Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, Falk V, Filippatos G, Hamm C, Head SJ, Juni P, Kappetein AP, Kastrati A, Knuuti J, Landmesser U, Laufer G, Neumann FJ, Richter DJ, Schauerte P, SousaUva M, Stefanini GG, Taggart DP, Torracca L, Valgimigli M, Wijns W, Witkowski A (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35:2541–2619CrossRefGoogle Scholar
  32. 32.
    Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Nallamothu BK, Ting HH (2011) 2011 ACCF/AHA/SCAI Guideline for Percutaneous Coronary Intervention: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 124:e574–e651Google Scholar
  33. 33.
    Kang SJ, Lee JY, Ahn JM, Mintz GS, Kim WJ, Park DW, Yun SC, Lee SW, Kim YH, Lee CW, Park SW, Park SJ (2011) Valication of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ Cardiovasc Interv 4:65–71CrossRefGoogle Scholar
  34. 34.
    Koh JS, Koo BK, Kim JH, Yang HM, Park KW, Kang HJ, Kim HS, Oh BH, Par YB (2012) Relationship between fractional flow reserve and angiographic and intravascular ultrasound parameters in ostial lesions. JACC Cardiovasc Interv 5:409–415CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Hironori Takami
    • 1
  • Shinjo Sonoda
    • 1
    Email author
  • Yoshitaka Muraoka
    • 1
  • Toshiya Miura
    • 1
  • Akiyoshi Shimizu
    • 1
  • Reo Anai
    • 1
  • Yoshinori Sanuki
    • 1
  • Tetsu Miyamoto
    • 1
  • Yasushi Oginosawa
    • 1
  • Yoshihisa Fujino
    • 2
  • Yuki Tsuda
    • 1
  • Masaru Araki
    • 1
  • Yutaka Otsuji
    • 1
  1. 1.Second Department of Internal MedicineUniversity of Occupational and Environmental HealthKitakyushuJapan
  2. 2.Department of Environmental EpidemiologyUniversity of Occupational and Environmental HealthKitakyushuJapan

Personalised recommendations