Heart and Vessels

, Volume 34, Issue 1, pp 74–83 | Cite as

Evaluation of the pulmonary artery potential using a 20-polar circumferential catheter and three-dimensional integrated intracardiac echocardiography

  • Masayuki Takahashi
  • Hisashi YokoshikiEmail author
  • Hirofumi Mitsuyama
  • Taro Tenma
  • Masaya Watanabe
  • Rui Kamada
  • Ryo Sasaki
  • Yuki Chiba
  • Motoki Maeno
  • Toshihisa Anzai
Original Article


Prolongation of the pulmonary artery potentials (PAPs) in response to short coupling intervals was related to polymorphic QRS configurations during the ventricular tachycardia originating above the pulmonary valve (PA-VT). This prospective study was aimed to investigate the mechanisms of polymorphic changes during the PA-VT. We performed the mapping above the pulmonary valve using a 20-polar circumferential catheter and three-dimensional integrated intracardiac echocardiography in 9 consecutive patients with outflow tract arrhythmias undergoing catheter ablation (UMIN ID: UMIN000021682). The location of successful ablation was right ventricular outflow tract (RVOT) in 6 patients, above the pulmonary valve in 1 patient, left coronary cusp in 1 patient, and unknown in 1 patient. The PAP was detected in six (67%) patients with bipolar voltage of 0.56 ± 0.27 mV. Pacing from bipolar electrodes of the circumferential catheter located above the pulmonary valve captured the PA myocardium only in 1 patient who had the PA-VT (100% in PA-VT vs 0% in non-PA-VT, P = 0.0046), and slight changes of the QRS morphology was observed in accordance with the conduction delay from the stimulus to activation of the RVOT myocardium. The selective PAP capture with conduction delays evoked by bipolar stimulations through a 20-polar circumferential catheter may be a characteristic property of patients with the PA-VT. Conduction delays within the PA and PA-RVOT junction appears to contribute polymorphic QRS changes during the PA-VT.


Ventricular tachycardia Polymorphic Pulmonary artery potential Pulmonary valve Intracardiac echocardiography 



We thank Drs. Masayuki Sakurai and Akihiko Yotsukura, Hokko Memorial Hospital, and Dr. Minoru Sato, National Hospital Organization Hokkaido Medical Center, for constant encouragement of this study.

Compliance with ethical standards

Conflict of interest

We declare that we have no conflict of interest.


  1. 1.
    Liao Z, Zhan X, Wu S, Xue Y, Fang X, Liao H, Deng H, Liang Y, Wei W, Liu Y, Ouyang F (2015) Idiopathic ventricular arrhythmias originating from the pulmonary sinus cusp: prevalence, electrocardiographic/electrophysiological characteristics, and catheter ablation. J Am Coll Cardiol 66:2633–2644CrossRefGoogle Scholar
  2. 2.
    Liu CF, Cheung JW, Thomas G, Ip JE, Markowitz SM, Lerman BB (2014) Ubiquitous myocardial extensions into the pulmonary artery demonstrated by integrated intracardiac echocardiography and electroanatomic mapping: changing the paradigm of idiopathic right ventricular outflow tract arrhythmias. Circ Arrhythm Electrophysiol 7:691–700CrossRefGoogle Scholar
  3. 3.
    Sekiguchi Y, Aonuma K, Takahashi A, Yamauchi Y, Hachiya H, Yokoyama Y, Iesaka Y, Isobe M (2005) Electrocardiographic and electrophysiologic characteristics of ventricular tachycardia originating within the pulmonary artery. J Am Coll Cardiol 45:887–895CrossRefGoogle Scholar
  4. 4.
    Tada H, Tadokoro K, Miyaji K, Ito S, Kurosaki K, Kaseno K, Naito S, Nogami A, Oshima S, Taniguchi K (2008) Idiopathic ventricular arrhythmias arising from the pulmonary artery: prevalence, characteristics, and topography of the arrhythmia origin. Heart Rhythm 5:419–426CrossRefGoogle Scholar
  5. 5.
    Yamashina Y, Yagi T, Namekawa A, Ishida A, Sato H, Nakagawa T, Sakuramoto M, Sato E, Yambe T (2010) Clinical and electrophysiological difference between idiopathic right ventricular outflow tract arrhythmias and pulmonary artery arrhythmias. J Cardiovasc Electrophysiol 21:163–169CrossRefGoogle Scholar
  6. 6.
    Yokoshiki H, Mizukami K, Mitsuyama H, Watanabe M, Tenma T, Tsutsui H (2016) Characteristics of idiopathic ventricular tachycardia originating above the pulmonary valve. Heart Vessels 31:599–607CrossRefGoogle Scholar
  7. 7.
    Zhang F, Yang B, Chen H, Ju W, Kojodjojo P, Li M, Gu K, Yang G, Cao K, Chen M (2016) Non-contact mapping-guided ablation of ventricular arrhythmias originating from the pulmonary artery. Europace 18:281–287CrossRefGoogle Scholar
  8. 8.
    Zhang J, Tang C, Zhang Y, Su X (2018) Pulmonary sinus cusp mapping and ablation: a new concept and approach for idiopathic right ventricular outflow tract arrhythmias. Heart Rhythm 15:38–45CrossRefGoogle Scholar
  9. 9.
    Heeger CH, Kuck KH, Ouyang F (2017) Catheter ablation of pulmonary sinus cusp-derived ventricular arrhythmias by the reversed U curve technique. J Cardiovasc Electrophysiol 28:776–777CrossRefGoogle Scholar
  10. 10.
    Hsia HH, Scheinman M (2018) Pulmonary sinus of Valsalva arrhythmias: a new twist to an old story. Heart Rhythm 15:46–47CrossRefGoogle Scholar
  11. 11.
    Yang Y, Liu Q, Liu Z, Zhou S (2017) Treatment of pulmonary sinus cusp-derived ventricular arrhythmia with reversed U-curve catheter ablation. J Cardiovasc Electrophysiol 28:768–775CrossRefGoogle Scholar
  12. 12.
    Timmermans C, Rodriguez LM, Crijns HJ, Moorman AF, Wellens HJ (2003) Idiopathic left bundle-branch block-shaped ventricular tachycardia may originate above the pulmonary valve. Circulation 108:1960–1967CrossRefGoogle Scholar
  13. 13.
    Lee DI, Park SW, Kook H, Kim W, Kim DH, Lee S, Oh SK, Kim YH (2013) Unusual polymorphic ventricular tachycardia originating from the pulmonary artery. Korean Circ J 43:119–122CrossRefGoogle Scholar
  14. 14.
    Nogami A (2015) Mapping and ablating ventricular premature contractions that trigger ventricular fibrillation: trigger elimination and substrate modification. J Cardiovasc Electrophysiol 26:110–115CrossRefGoogle Scholar
  15. 15.
    Yagishita A, Yamauchi Y, Sato H, Yamashita S, Hirao T, Usui E, Kawahatsu K, Miyazaki R, Yamaguchi T, Hara N, Umemoto T, Miyamoto T, Obayashi T, Hirao K, Aonuma K (2014) Pulmonary artery isolation for idiopathic polymorphic outflow tract ventricular tachycardia. J Jpn Soc Clin Card Electrophysiol 37:111–118Google Scholar
  16. 16.
    Lerman BB (2015) Mechanism, diagnosis, and treatment of outflow tract tachycardia. Nat Rev Cardiol 12:597–608CrossRefGoogle Scholar
  17. 17.
    Hasdemir C, Aktas S, Govsa F, Aktas EO, Kocak A, Bozkaya YT, Demirbas MI, Ulucan C, Ozdogan O, Kayikcioglu M, Can LH, Payzin S (2007) Demonstration of ventricular myocardial extensions into the pulmonary artery and aorta beyond the ventriculo-arterial junction. Pacing Clin Electrophysiol 30:534–539CrossRefGoogle Scholar
  18. 18.
    Gami AS, Noheria A, Lachman N, Edwards WD, Friedman PA, Talreja D, Hammill SC, Munger TM, Packer DL, Asirvatham SJ (2011) Anatomical correlates relevant to ablation above the semilunar valves for the cardiac electrophysiologist: a study of 603 hearts. J Interv Card Electrophysiol 30:5–15CrossRefGoogle Scholar
  19. 19.
    Yamasaki H, Bertagnolli L, Hindricks G, Arya A (2016) Idiopathic premature ventricular contraction conducting over a ventricle myocardial extension from the pulmonary artery. Pacing Clin Electrophysiol 39:1159–1163CrossRefGoogle Scholar
  20. 20.
    Cabo C, Pertsov AM, Baxter WT, Davidenko JM, Gray RA, Jalife J (1994) Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle. Circ Res 75:1014–1028CrossRefGoogle Scholar
  21. 21.
    De la Fuente D, Sasyniuk B, Moe GK (1971) Conduction through a narrow isthmus in isolated canine atrial tissue. A model of the W-P-W syndrome. Circulation 44:803–809CrossRefGoogle Scholar
  22. 22.
    Sicouri S, Belardinelli L, Carlsson L, Antzelevitch C (2009) Potent antiarrhythmic effects of chronic amiodarone in canine pulmonary vein sleeve preparations. J Cardiovasc Electrophysiol 20:803–810CrossRefGoogle Scholar
  23. 23.
    Postema PG, van Dessel PF, de Bakker JM, Dekker LR, Linnenbank AC, Hoogendijk MG, Coronel R, Tijssen JG, Wilde AA, Tan HL (2008) Slow and discontinuous conduction conspire in Brugada syndrome: a right ventricular mapping and stimulation study. Circ Arrhythm Electrophysiol 1:379–386CrossRefGoogle Scholar
  24. 24.
    Cao JM, Qu Z, Kim YH, Wu TJ, Garfinkel A, Weiss JN, Karagueuzian HS, Chen PS (1999) Spatiotemporal heterogeneity in the induction of ventricular fibrillation by rapid pacing: importance of cardiac restitution properties. Circ Res 84:1318–1331CrossRefGoogle Scholar
  25. 25.
    Qu Z, Garfinkel A, Chen PS, Weiss JN (2000) Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 102:1664–1670CrossRefGoogle Scholar
  26. 26.
    Watanabe MA, Fenton FH, Evans SJ, Hastings HM, Karma A (2001) Mechanisms for discordant alternans. J Cardiovasc Electrophysiol 12:196–206CrossRefGoogle Scholar
  27. 27.
    Sakamoto S, Takagi M, Kakihara J, Hayashi Y, Doi A, Sugioka K, Yoshiyama M (2017) The utility of T-wave alternans during the morning in the summer for the risk stratification of patients with Brugada syndrome. Heart Vessels 32:341–351CrossRefGoogle Scholar
  28. 28.
    Sakamoto S, Takagi M, Tatsumi H, Doi A, Sugioka K, Hanatani A, Yoshiyama M (2016) Utility of Tave alternans during night time as a predictor for ventricular fibrillation in patients with Brugada syndrome. Heart Vessels 31:947–956CrossRefGoogle Scholar
  29. 29.
    Nakagawa H, Yamanashi WS, Pitha JV, Arruda M, Wang X, Ohtomo K, Beckman KJ, McClelland JH, Lazzara R, Jackman WM (1995) Comparison of in vivo tissue temperature profile and lesion geometry for radiofrequency ablation with a saline-irrigated electrode versus temperature control in a canine thigh muscle preparation. Circulation 91:2264–2273CrossRefGoogle Scholar
  30. 30.
    Vaseghi M, Cesario DA, Mahajan A, Wiener I, Boyle NG, Fishbein MC, Horowitz BN, Shivkumar K (2006) Catheter ablation of right ventricular outflow tract tachycardia: value of defining coronary anatomy. J Cardiovasc Electrophysiol 17:632–637CrossRefGoogle Scholar
  31. 31.
    Ren JF, Callans DJ, Marchlinski FE (2016) Cautionary pulmonary insufficiency in ablation of ventricular arrhythmias from pulmonary sinus cusps. J Am Coll Cardiol 67:2560–2562CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Masayuki Takahashi
    • 1
  • Hisashi Yokoshiki
    • 2
    Email author
  • Hirofumi Mitsuyama
    • 3
  • Taro Tenma
    • 1
  • Masaya Watanabe
    • 1
  • Rui Kamada
    • 1
  • Ryo Sasaki
    • 4
  • Yuki Chiba
    • 4
  • Motoki Maeno
    • 4
  • Toshihisa Anzai
    • 1
  1. 1.Department of Cardiovascular MedicineHokkaido University Graduate School of MedicineSapporoJapan
  2. 2.Department of Cardiovascular MedicineSapporo City General HospitalSapporoJapan
  3. 3.Department of Cardiovascular MedicineHokkaido Ohno Memorial HospitalSapporoJapan
  4. 4.Division of Medical Engineering CenterHokkaido University HospitalSapporoJapan

Personalised recommendations