Advertisement

Heart and Vessels

, Volume 34, Issue 1, pp 1–8 | Cite as

Increased plasma xanthine oxidoreductase activity deteriorates coronary artery spasm

  • Ken Watanabe
  • Tetsuro ShishidoEmail author
  • Yoichiro Otaki
  • Tetsu Watanabe
  • Takayuki Sugai
  • Taku Toshima
  • Tetsuya Takahashi
  • Miyuki Yokoyama
  • Daisuke Kinoshita
  • Takayo Murase
  • Takashi Nakamura
  • Masahiro Wanezaki
  • Harutoshi Tamura
  • Satoshi Nishiyama
  • Hiroki Takahashi
  • Takanori Arimoto
  • So Yamauchi
  • Tamon Yamanaka
  • Takuya Miyamoto
  • Isao Kubota
  • Masafumi Watanabe
Original Article
  • 222 Downloads

Abstract

Increased reactive oxygen species (ROS) contributes to the development of endothelial dysfunction, which is involved in coronary artery spasm (CAS). Xanthine oxidoreductase (XOR) plays a pivotal role in producing both uric acid and ROS. However, the association between plasma XOR activity and CAS has not been elucidated. The aim of this study was to investigate whether plasma XOR activity is associated with CAS. We measured XOR activity in 104 patients suspected for CAS, who presented without significant coronary artery stenosis and underwent intracoronary acetylcholine provocation tests. CAS was provoked in 44 patients and they had significantly higher XOR activity as compared with those without CAS. The patients were divided into three groups based on the XOR activity. The prevalence rate of CAS was increased with increasing XOR activity. A multivariate logistic regression analysis showed that the 3rd tertile group exhibited a higher incidence of CAS as compared with the 1st tertile group [odds ratio (OR) 6.9, P = 0.001) and the 2nd tertile group (OR 3.2, P = 0.033) after adjustment for conventional CAS risk factors, respectively. The C index was significantly improved by the addition of XOR activity to the baseline model based on CAS risk factors. Furthermore, the 3rd tertile group had the highest incidence of severe spasm defined as total obstruction, flow-limiting stenosis, diffuse spasm, multivessel spasm, and/or lethal arrhythmia. This is a first report to elucidate the association of plasma XOR activity with CAS. Increased plasma XOR activity is significantly associated with CAS.

Keywords

Xanthine oxidoreductase Coronary artery spasm Reactive oxygen species Uric acid 

Notes

Acknowledgements

This work was in part supported by the consigned research fund from Sanwa Kagaku Kenkyusho Co., Ltd and by Japan Society for Promotion of Science KAKENHI (Grant No. 17K15984, 18K08025, 18K08059, and 18K15838). We also would like to thank Editage (https://www.editage.jp) for the English language review.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Finegold JA, Asaria P, Francis DP (2013) Mortality from ischaemic heart disease by country, region, and age: statistics from World Health Organisation and United Nations. Int J Cardiol 168:934–945CrossRefGoogle Scholar
  2. 2.
    Yasue H, Nakagawa H, Itoh T, Harada E, Mizuno Y (2008) Coronary artery spasm–clinical features, diagnosis, pathogenesis, and treatment. J Cardiol 51:2–17CrossRefGoogle Scholar
  3. 3.
    Pristipino C, Beltrame JF, Finocchiaro ML, Hattori R, Fujita M, Mongiardo R, Cianflone D, Sanna T, Sasayama S, Maseri A (2000) Major racial differences in coronary constrictor response between japanese and caucasians with recent myocardial infarction. Circulation 101:1102–1108CrossRefGoogle Scholar
  4. 4.
    Lanza GA, Careri G, Crea F (2011) Mechanisms of coronary artery spasm. Circulation 124:1774–1782CrossRefGoogle Scholar
  5. 5.
    Hung MJ, Hu P, Hung MY (2014) Coronary artery spasm: review and update. Int J Med Sci 11:1161–1171CrossRefGoogle Scholar
  6. 6.
    Munzel T, Camici GG, Maack C, Bonetti NR, Fuster V, Kovacic JC (2017) Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-Part series. J Am Coll Cardiol 70:212–229CrossRefGoogle Scholar
  7. 7.
    Khosla UM, Zharikov S, Finch JL, Nakagawa T, Roncal C, Mu W, Krotova K, Block ER, Prabhakar S, Johnson RJ (2005) Hyperuricemia induces endothelial dysfunction. Kidney Int 67:1739–1742CrossRefGoogle Scholar
  8. 8.
    Battelli MG, Bolognesi A, Polito L (2014) Pathophysiology of circulating xanthine oxidoreductase: new emerging roles for a multi-tasking enzyme. Biochim Biophys Acta 1842:1502–1517CrossRefGoogle Scholar
  9. 9.
    Otaki Y, Watanabe T, Kinoshita D, Yokoyama M, Takahashi T, Toshima T, Sugai T, Murase T, Nakamura T, Nishiyama S, Takahashi H, Arimoto T, Shishido T, Miyamoto T, Kubota I (2017) Association of plasma xanthine oxidoreductase activity with severity and clinical outcome in patients with chronic heart failure. Int J Cardiol 228:151–157CrossRefGoogle Scholar
  10. 10.
    Nishino M, Mori N, Yoshimura T, Nakamura D, Lee Y, Taniike M, Makino N, Kato H, Egami Y, Shutta R, Tanouchi J, Yamada Y (2014) Higher serum uric acid and lipoprotein(a) are correlated with coronary spasm. Heart Vessels 29:186–190CrossRefGoogle Scholar
  11. 11.
    Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, Christiaens T, Cifkova R, De Backer G, Dominiczak A, Galderisi M, Grobbee DE, Jaarsma T, Kirchhof P, Kjeldsen SE, Laurent S, Manolis AJ, Nilsson PM, Ruilope LM, Schmieder RE, Sirnes PA, Sleight P, Viigimaa M, Waeber B, Zannad F (2014) 2013 ESH/ESC practice guidelines for the management of arterial hypertension. Blood Press 23:3–16CrossRefGoogle Scholar
  12. 12.
    Murase T, Nampei M, Oka M, Miyachi A, Nakamura T (2016) A highly sensitive assay of human plasma xanthine oxidoreductase activity using stable isotope-labeled xanthine and LC/TQMS. J Chromatogr B Analyt Technol Biomed Life Sci 1039:51–58CrossRefGoogle Scholar
  13. 13.
    Sugano Y, Anzai T, Yagi T, Noma S (2010) Impact of high-density lipoprotein cholesterol level in patients with variant angina pectoris. Int J Cardiol 140:175–181CrossRefGoogle Scholar
  14. 14.
    Li YH, Lin GM, Lin CL, Wang JH, Chen YJ, Han CL (2013) Relation of serum uric acid and body mass index to mortality in high-risk patients with established coronary artery disease: a report from the ET-CHD registry, 1997-2006. J Cardiol 62:354–360CrossRefGoogle Scholar
  15. 15.
    Li M, Hu X, Fan Y, Li K, Zhang X, Hou W, Tang Z (2016) Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci Rep 6:19520CrossRefGoogle Scholar
  16. 16.
    Puddu P, Puddu GM, Cravero E, Vizioli L, Muscari A (2012) Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol 59:235–242CrossRefGoogle Scholar
  17. 17.
    Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA (2005) Uric acid and oxidative stress. Curr Pharm Des 11:4145–4151CrossRefGoogle Scholar
  18. 18.
    Cantu-Medellin N, Kelley EE (2013) Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol 1:353–358CrossRefGoogle Scholar
  19. 19.
    Hellsten-Westing Y (1993) Immunohistochemical localization of xanthine oxidase in human cardiac and skeletal muscle. Histochemistry 100:215–222CrossRefGoogle Scholar
  20. 20.
    Chen C, Lü J-M, Yao Q (2016) Hyperuricemia-related diseases and xanthine oxidoreductase (XOR) inhibitors: an overview. Med Sci Monit 22:2501–2512CrossRefGoogle Scholar
  21. 21.
    Forstermann U, Xia N, Li H (2017) Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res 120:713–735CrossRefGoogle Scholar
  22. 22.
    Lefroy DC, Crake T, Uren NG, Davies GJ, Maseri A (1993) Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation 88:43–54CrossRefGoogle Scholar
  23. 23.
    Spiekermann S (2003) Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 107:1383–1389CrossRefGoogle Scholar
  24. 24.
    Radi R, Beckman JS, Bush KM, Freeman BA (1991) Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 266:4244–4250Google Scholar
  25. 25.
    George J, Carr E, Davies J, Belch JJ, Struthers A (2006) High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114:2508–2516CrossRefGoogle Scholar
  26. 26.
    Nakagawa H, Morikawa Y, Mizuno Y, Harada E, Ito T, Matsui K, Saito Y, Yasue H (2009) Coronary spasm preferentially occurs at branch points: an angiographic comparison with atherosclerotic plaque. Circ Cardiovasc Interv 2:97–104CrossRefGoogle Scholar
  27. 27.
    Morita S, Mizuno Y, Harada E, Nakagawa H, Morikawa Y, Saito Y, Katoh D, Kashiwagi Y, Yoshimura M, Murohara T, Yasue H (2014) Differences and interactions between risk factors for coronary spasm and atherosclerosis–smoking, aging, inflammation, and blood pressure. Intern Med 53:2663–2670CrossRefGoogle Scholar
  28. 28.
    Ishii M, Kaikita K, Sato K, Tanaka T, Sugamura K, Sakamoto K, Izumiya Y, Yamamoto E, Tsujita K, Yamamuro M, Kojima S, Soejima H, Hokimoto S, Matsui K, Ogawa H (2015) Acetylcholine-provoked coronary spasm at site of significant organic stenosis predicts poor prognosis in patients with coronary vasospastic angina. J Am Coll Cardiol 66:1105–1115CrossRefGoogle Scholar
  29. 29.
    Yamagishi M, Miyatake K, Tamai J, Nakatani S, Koyama J, Nissen SE (1994) Intravascular ultrasound detection of atherosclerosis at the site of focal vasospasm in angiographically normal or minimally narrowed coronary segments. J Am Coll Cardiol 23:352–357CrossRefGoogle Scholar
  30. 30.
    Battelli MG, Polito L, Bolognesi A (2014) Xanthine oxidoreductase in atherosclerosis pathogenesis: not only oxidative stress. Atherosclerosis 237:562–567CrossRefGoogle Scholar
  31. 31.
    Tsushima Y, Nishizawa H, Tochino Y, Nakatsuji H, Sekimoto R, Nagao H, Shirakura T, Kato K, Imaizumi K, Takahashi H, Tamura M, Maeda N, Funahashi T, Shimomura I (2013) Uric acid secretion from adipose tissue and its increase in obesity. J Biol Chem 288:27138–27149CrossRefGoogle Scholar
  32. 32.
    Patetsios P, Song M, Shutze WP, Pappas C, Rodino W, Ramirez JA, Panetta TF (2001) Identification of uric acid and xanthine oxidase in atherosclerotic plaque. Am J Cardiol 88(188–191):a186Google Scholar
  33. 33.
    Shimokawa H, Takeshita A (2005) Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 25:1767–1775CrossRefGoogle Scholar
  34. 34.
    Crea F, Lanza GA (2011) New light on a forgotten disease: vasospastic angina. J Am Coll Cardiol 58:1238–1240CrossRefGoogle Scholar
  35. 35.
    George J, Struthers AD (2009) Role of urate, xanthine oxidase and the effects of allopurinol in vascular oxidative stress. Vasc Health Risk Manag 5:265–272CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Ken Watanabe
    • 1
  • Tetsuro Shishido
    • 1
    Email author
  • Yoichiro Otaki
    • 1
  • Tetsu Watanabe
    • 1
  • Takayuki Sugai
    • 1
  • Taku Toshima
    • 1
  • Tetsuya Takahashi
    • 1
  • Miyuki Yokoyama
    • 1
  • Daisuke Kinoshita
    • 1
  • Takayo Murase
    • 2
  • Takashi Nakamura
    • 3
  • Masahiro Wanezaki
    • 1
  • Harutoshi Tamura
    • 1
  • Satoshi Nishiyama
    • 1
  • Hiroki Takahashi
    • 1
  • Takanori Arimoto
    • 1
  • So Yamauchi
    • 1
  • Tamon Yamanaka
    • 1
  • Takuya Miyamoto
    • 1
  • Isao Kubota
    • 1
  • Masafumi Watanabe
    • 1
  1. 1.Department of Cardiology, Pulmonology and NephrologyYamagata University School of MedicineYamagataJapan
  2. 2.Radioisotope and Chemical Analysis CenterSanwa Kagaku Kenkyusho Co., LtdMieJapan
  3. 3.Pharmacological Study Group, Pharmaceutical Research LaboratoriesSanwa Kagaku Kenkyusho Co., LtdMieJapan

Personalised recommendations