Advertisement

Heart and Vessels

, Volume 33, Issue 9, pp 1037–1045 | Cite as

Impact of reduced forced expiratory volume on cardiac prognosis in patients with chronic heart failure

  • Yuki Honda
  • Tetsu Watanabe
  • Yoichiro Otaki
  • Harutoshi Tamura
  • Satoshi Nishiyama
  • Hiroki Takahashi
  • Takanori Arimoto
  • Tetsuro Shishido
  • Takuya Miyamoto
  • Yoko Shibata
  • Isao Kubota
Original Article
  • 97 Downloads

Abstract

In patients with chronic heart failure (CHF), comorbidity of airflow limitation is associated with poor outcomes. The forced expiratory volume in 1 s (FEV1) is used to evaluate the severity of airflow limitation. However, the impact of FEV1 severity on prognosis has only been partially elucidated in patients with CHF. In total, 248 consecutive patients with CHF who successfully fulfilled spirometric measurement criteria were enrolled and prospectively followed. Percent predicted FEV1 (FEV1%predicted) was associated with the New York Heart Association Functional Classification. FEV1%predicted was significantly associated with diastolic dysfunction, evaluated using echocardiography; elevated inflammation markers; and increased pulmonary arterial pressure. There were 60 cardiac events, including 9 cardiac-related deaths and 51 re-hospitalizations due to the exacerbation of CHF during a follow-up period. Kaplan–Meier analysis revealed that the lowest FEV1%predicted group had the highest event rate, irrespective of the presence of smoking history. Multivariate Cox proportional hazard analysis showed that FEV1%predicted was an independent predictor of cardiac events after adjusting for confounders. The net reclassification improvement and integrated discrimination improvement were improved by the addition of FEV1%predicted to other cardiac risk factors. Decreased FEV1%predicted was independently associated with the poor cardiac outcomes in patients with CHF.

Keywords

Airflow limitation Chronic obstructive pulmonary disease FEV1%predicted Chronic heart failure 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Jessup M, Brozena S (2003) Heart failure. N Engl J Med 348:2007–2018CrossRefPubMedGoogle Scholar
  2. 2.
    Briasoulis A, Androulakis E, Christophides T, Tousoulis D (2016) The role of inflammation and cell death in the pathogenesis, progression and treatment of heart failure. Heart Fail Rev 21:169–176CrossRefPubMedGoogle Scholar
  3. 3.
    Pardaens S, Calders P, Derom E, De Sutter J (2013) Exercise intolerance in heart failure: update on exercise parameters for diagnosis, prognosis and therapeutic interventions. Acta Cardiol 68:495–504CrossRefPubMedGoogle Scholar
  4. 4.
    Murray CJ, Lopez AD (1997) Alternative projections of mortality and disability by cause 1990–2020: global burden of disease study. Lancet 349:1498–1504CrossRefPubMedGoogle Scholar
  5. 5.
    Shibata Y, Inoue S, Igarashi A, Yamauchi K, Abe S, Aida Y, Nunomiya K, Sato M, Nakano H, Sato K, Nemoto T, Kimura T, Watanabe T, Konta T, Daimon M, Ueno Y, Kato T, Kayama T, Kubota I (2013) A lower level of forced expiratory volume in 1 s is a risk factor for all-cause and cardiovascular mortality in a Japanese population: the Takahata study. PLoS One 8:e83725CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mullerova H, Agusti A, Erqou S, Mapel DW (2013) Cardiovascular comorbidity in COPD: systematic literature review. Chest 144:1163–1178CrossRefPubMedGoogle Scholar
  7. 7.
    Rutten FH, Cramer MJ, Lammers JW, Grobbee DE, Hoes AW (2006) Heart failure and chronic obstructive pulmonary disease: an ignored combination? Eur J Heart Fail 8:706–711CrossRefPubMedGoogle Scholar
  8. 8.
    Bateman ED, Ferguson GT, Barnes N, Gallagher N, Green Y, Henley M, Banerji D (2013) Dual bronchodilation with QVA149 versus single bronchodilator therapy: the SHINE study. Eur Respir J 42:1484–1494CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Celli BR, MacNee W (2004) Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J 23:932–946CrossRefPubMedGoogle Scholar
  10. 10.
    Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilatory flows. Report working party standardization of lung function tests, European Community for Steel and Coal. Official statement of the European Respiratory Society. Eur Respir J Suppl 16:5–40CrossRefPubMedGoogle Scholar
  11. 11.
    (2004) Guideline of respiratory function tests–spirometry, flow-volume curve, diffusion capacity of the lung. Nihon Kokyuki Gakkai Zasshi Suppl 1–56Google Scholar
  12. 12.
    Brenner S, Guder G, Berliner D, Deubner N, Frohlich K, Ertl G, Jany B, Angermann CE, Stork S (2013) Airway obstruction in systolic heart failure—COPD or congestion? Int J Cardiol 168:1910–1916CrossRefPubMedGoogle Scholar
  13. 13.
    Sasaki F, Ishizaki T, Mifune J, Fujimura M, Nishioka S, Miyabo S (1990) Bronchial hyperresponsiveness in patients with chronic congestive heart failure. Chest 97:534–538CrossRefPubMedGoogle Scholar
  14. 14.
    Fukuchi Y, Nishimura M, Ichinose M, Adachi M, Nagai A, Kuriyama T, Takahashi K, Nishimura K, Ishioka S, Aizawa H, Zaher C (2004) COPD in Japan: the Nippon COPD epidemiology study. Respirology 9:458–465CrossRefPubMedGoogle Scholar
  15. 15.
    Guder G, Rutten FH, Brenner S, Angermann CE, Berliner D, Ertl G, Jany B, Lammers JW, Hoes AW, Stork S (2012) The impact of heart failure on the classification of COPD severity. J Card Fail 18:637–644CrossRefPubMedGoogle Scholar
  16. 16.
    Peinado VI, Barbera JA, Ramirez J, Gomez FP, Roca J, Jover L, Gimferrer JM, Rodriguez-Roisin R (1998) Endothelial dysfunction in pulmonary arteries of patients with mild COPD. Am J Physiol 274:L908–L913PubMedGoogle Scholar
  17. 17.
    Park JE, Lyon AR, Shao D, Hector LR, Xu H, O’Gara P, Pinhu L, Chambers RC, Wort SJ, Griffiths MJ (2014) Pulmonary venous hypertension and mechanical strain stimulate monocyte chemoattractant protein-1 release and structural remodelling of the lung in human and rodent chronic heart failure models. Thorax 69:1120–1127CrossRefPubMedGoogle Scholar
  18. 18.
    Barr RG, Bluemke DA, Ahmed FS, Carr JJ, Enright PL, Hoffman EA, Jiang R, Kawut SM, Kronmal RA, Lima JA, Shahar E, Smith LJ, Watson KE (2010) Percent emphysema, airflow obstruction, and impaired left ventricular filling. N Engl J Med 362:217–227CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jorgensen K, Muller MF, Nel J, Upton RN, Houltz E, Ricksten SE (2007) Reduced intrathoracic blood volume and left and right ventricular dimensions in patients with severe emphysema: an MRI study. Chest 131:1050–1057CrossRefPubMedGoogle Scholar
  20. 20.
    Faludi R, Hajdu M, Vertes V, Nogradi A, Varga N, Illes MB, Sarosi V, Alexy G, Komocsi A (2016) Diastolic dysfunction is a contributing factor to exercise intolerance in COPD. COPD 13:345–351CrossRefPubMedGoogle Scholar
  21. 21.
    Bhatt SP, Dransfield MT (2013) Chronic obstructive pulmonary disease and cardiovascular disease. Transl Res 162:237–251CrossRefPubMedGoogle Scholar
  22. 22.
    Ishikawa N, Hattori N, Kohno N, Kobayashi A, Hayamizu T, Johnson M (2015) Airway inflammation in Japanese COPD patients compared with smoking and nonsmoking controls. Int J Chronic Obstr Pulm Dis 10:185–192Google Scholar
  23. 23.
    Sorensen GL, Madsen J, Kejling K, Tornoe I, Nielsen O, Townsend P, Poulain F, Nielsen CH, Reid KB, Hawgood S, Falk E, Holmskov U (2006) Surfactant protein D is proatherogenic in mice. Am J Physiol Heart Circ Physiol 290:H2286–H2294CrossRefPubMedGoogle Scholar
  24. 24.
    Araujo JP, Lourenco P, Azevedo A, Frioes F, Rocha-Goncalves F, Ferreira A, Bettencourt P (2009) Prognostic value of high-sensitivity C-reactive protein in heart failure: a systematic review. J Card Fail 15:256–266CrossRefPubMedGoogle Scholar
  25. 25.
    Barnes PJ, Celli BR (2009) Systemic manifestations and comorbidities of COPD. Eur Respir J 33:1165–1185CrossRefPubMedGoogle Scholar
  26. 26.
    Oliveira MF, Arbex FF, Alencar MC, Souza A, Sperandio PA, Medeiros WM, Mazzuco A, Borghi-Silva A, Medina LA, Santos R, Hirai DM, Mancuso F, Almeida D, O’Donnell DE, Neder JA (2016) Heart failure impairs muscle blood flow and endurance exercise tolerance in COPD. COPD 13:407–415CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Yuki Honda
    • 1
  • Tetsu Watanabe
    • 2
  • Yoichiro Otaki
    • 2
  • Harutoshi Tamura
    • 2
  • Satoshi Nishiyama
    • 2
  • Hiroki Takahashi
    • 2
  • Takanori Arimoto
    • 2
  • Tetsuro Shishido
    • 2
  • Takuya Miyamoto
    • 2
  • Yoko Shibata
    • 3
  • Isao Kubota
    • 3
  1. 1.Department of Internal MedicineNational Insurance Kuzumaki HospitalIwateJapan
  2. 2.Department of Cardiology, Pulmonology and NephrologyYamagata University School of MedicineYamagataJapan
  3. 3.Department of Pulmonary MedicineFukushima Medical University School of MedicineFukushimaJapan

Personalised recommendations