Advertisement

Heart and Vessels

, Volume 33, Issue 9, pp 965–977 | Cite as

Effect of pioglitazone on cardiometabolic profiles and safety in patients with type 2 diabetes undergoing percutaneous coronary artery intervention: a prospective, multicenter, randomized trial

  • Atsushi Tanaka
  • Sho Komukai
  • Yoshisato Shibata
  • Hiroyoshi Yokoi
  • Yoshihiro Iwasaki
  • Tomohiro Kawasaki
  • Kenji Horiuchi
  • Koichi Nakao
  • Takafumi Ueno
  • Hitoshi Nakashima
  • Masahiro Tamashiro
  • Yutaka Hikichi
  • Mitsuhiro Shimomura
  • Motoko Tago
  • Shigeru Toyoda
  • Teruo Inoue
  • Atsushi Kawaguchi
  • Koichi Node
  • On behalf of the Pioglitazone Reduce Inflammation and Restenosis with and without Drug Eluting Stent (PRIDE) Study Investigators
Original Article
  • 146 Downloads

Abstract

Pioglitazone has superior antiatherosclerotic effects compared with other classes of antidiabetic agents, and there is substantial evidence that pioglitazone improves cardiovascular (CV) outcomes. However, there is also a potential risk of worsening heart failure (HF). Therefore, it is clinically important to determine whether pioglitazone is safe in patients with type 2 diabetes mellitus (T2DM) who require treatment for secondary prevention of CV disease, since they have an intrinsically higher risk of HF. This prospective, multicenter, open-label, randomized study investigated the effects of pioglitazone on cardiometabolic profiles and CV safety in T2DM patients undergoing elective percutaneous coronary intervention (PCI) using bare-metal stents or first-generation drug-eluting stents. A total of 94 eligible patients were randomly assigned to either a pioglitazone or conventional (control) group, and pioglitazone was started the day before PCI. Cardiometabolic profiles were evaluated before PCI and at primary follow-up coronary angiography (5–8 months). Pioglitazone treatment reduced HbA1c levels to a similar degree as conventional treatment (pioglitazone group 6.5 to 6.0%, P < 0.01; control group 6.5 to 5.9%, P < 0.001), without body weight gain. Levels of high-molecular weight adiponectin increased more in the pioglitazone group than the control group (P < 0.001), and the changes were irrespective of baseline glycemic control. Furthermore, pioglitazone significantly reduced plasma levels of natriuretic peptides and preserved cardiac systolic and diastolic function (assessed by echocardiography) without incident hospitalization for worsening HF. The incidence of clinical adverse events was also comparable between the groups. These results indicate that pioglitazone treatment before and after elective PCI may be tolerable and clinically safe and may improve cardiometabolic profiles in T2DM patients.

Keywords

Pioglitazone Type 2 diabetes mellitus Adiponectin Cardiac function Percutaneous coronary intervention 

Notes

Acknowledgements

This study was partly supported by JSPS KAKENHI Grant Number 17K09510. The authors thank Sae Katafuchi and Aya Yamada for their excellent secretarial assistance.

Compliance with ethical standards

Conflict of interest

HY has received honoraria from Takeda. TU has received honoraria from Daiichi Sankyo, Bayer, Mochida, Boehringer Ingelheim; research funding from Daiichi Sankyo. TI has received honoraria from Mochida and Bayer; and scholarships from Abbott, KAATHU JAPAN, GOODMAN, CLINICO, Shionogi, St. Jude Medical, Daiichi Sankyo, Takeda, Mitsubishi Tanabe, Teijin, Boehringer Ingelheim, Boston Scientific Japan, and UNION TOOL. KNo has received honoraria from Daiichi Sankyo, Merck, Pfizer, Eli Lilly, Amgen, Boehringer Ingelheim, Mitsubishi Tanabe, and Astellas; research funding from Bayer, Teijin, Mitsubishi Tanabe, Astellas, Boehringer Ingelheim, and Asahi Kasei; and scholarships from Astellas, Daiichi Sankyo, Sumitomo Dainippon, Takeda, Mitsubishi Tanabe, and Boehringer Ingelheim. The remaining authors have no financial interests to disclose related to this manuscript.

References

  1. 1.
    Emerging Risk Factors Collaboration, Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E, Ingelsson E, Lawlor DA, Selvin E, Stampfer M, Stehouwer CD, Lewington S, Pennells L, Thompson A, Sattar N, White IR, Ray KK, Danesh J (2010) Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 375:2215–2222CrossRefGoogle Scholar
  2. 2.
    Rao Kondapally Seshasai S, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, Whincup PH, Mukamal KJ, Gillum RF, Holme I, Njølstad I, Fletcher A, Nilsson P, Lewington S, Collins R, Gudnason V, Thompson SG, Sattar N, Selvin E, Hu FB, Danesh J, Emerging Risk Factors Collaboration (2011) Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364:829–841CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Li N, Yang YG, Chen MH (2016) Comparing the adverse clinical outcomes in patients with non-insulin treated type 2 diabetes mellitus and patients without type 2 diabetes mellitus following percutaneous coronary intervention: a systematic review and meta-analysis. BMC Cardiovasc Disord 16:238CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Park KW, Lee JM, Kang SH, Ahn HS, Kang HJ, Koo BK, Rhew JY, Hwang SH, Lee SY, Kang TS, Kwak CH, Hong BK, Yu CW, Seong IW, Ahn T, Lee HC, Lim SW, Kim HS (2014) Everolimus-eluting Xience v/Promus versus zotarolimus-eluting resolute stents in patients with diabetes mellitus. JACC Cardiovasc Interv 7:471–481CrossRefPubMedGoogle Scholar
  5. 5.
    Tada T, Kimura T, Morimoto T, Ono K, Furukawa Y, Nakagawa Y, Nakashima H, Ito A, Siode N, Namura M, Inoue N, Nishikawa H, Nakao K, Mitsudo K, j-Cypher Registry Investigators (2011) Comparison of three-year clinical outcomes after sirolimus-eluting stent implantation among insulin-treated diabetic, non-insulin-treated diabetic, and non-diabetic patients from j-Cypher registry. Am J Cardiol 107:1155–1162CrossRefPubMedGoogle Scholar
  6. 6.
    Moussa I, Leon MB, Baim DS, O’Neill WW, Popma JJ, Buchbinder M, Midwall J, Simonton CA, Keim E, Wang P, Kuntz RE, Moses JW (2004) Impact of sirolimus-eluting stents on outcome in diabetic patients: a SIRIUS (SIRolImUS-coated Bx Velocity balloon-expandable stent in the treatment of patients with de novo coronary artery lesions) substudy. Circulation 109:2273–2278CrossRefPubMedGoogle Scholar
  7. 7.
    Komatsu T, Komatsu S, Nakamura H, Kuroyanagi T, Fujikake A, Hisauchi I, Sakuma M, Nakahara S, Sakai Y, Taguchi I (2016) Insulin resistance as a predictor of the late catch-up phenomenon after drug-eluting stent implantation. Circ J 80:657–662CrossRefPubMedGoogle Scholar
  8. 8.
    Zhao LP, Xu WT, Wang L, Li H, Shao CL, Gu HB, Chan SP, Xu HF, Yang XJ (2015) Influence of insulin resistance on in-stent restenosis in patients undergoing coronary drug-eluting stent implantation after long-term angiographic follow-up. Coron Artery Dis 26:5–10CrossRefPubMedGoogle Scholar
  9. 9.
    Uetani T, Amano T, Harada K, Kitagawa K, Kunimura A, Shimbo Y, Harada K, Yoshida T, Kato B, Kato M, Marui N, Nanki M, Hotta N, Ishii H, Matsubara T, Murohara T (2012) Impact of insulin resistance on post-procedural myocardial injury and clinical outcomes in patients who underwent elective coronary interventions with drug-eluting stents. JACC Cardiovasc Interv 5:1159–1167CrossRefPubMedGoogle Scholar
  10. 10.
    Quinn CE, Hamilton PK, Lockhart CJ, McVeigh GE (2008) Thiazolidinediones: effects on insulin resistance and the cardiovascular system. Br J Pharmacol 153:636–645CrossRefPubMedGoogle Scholar
  11. 11.
    Miyazaki Y, Mahankali A, Matsuda M, Glass L, Mahankali S, Ferrannini E, Cusi K, Mandarino LJ, DeFronzo RA (2001) Improved glycemic control and enhanced insulin sensitivity in type 2 diabetic subjects treated with pioglitazone. Diabetes Care 24:710–719CrossRefPubMedGoogle Scholar
  12. 12.
    Pfutzner A, Marx N, Lubben G, Langenfeld M, Walcher D, Konrad T, Forst T (2005) Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control: results from the pioneer study. J Am Coll Cardiol 45:1925–1931CrossRefPubMedGoogle Scholar
  13. 13.
    Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB Sr, Perez A, Provost JC, Haffner SM (2006) Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 296:2572–2581CrossRefPubMedGoogle Scholar
  14. 14.
    Permana PA, Zhang W, Wabitsch M, Fischer-Posovszky P, Duckworth WC, Reaven PD (2009) Pioglitazone reduces inflammatory responses of human adipocytes to factors secreted by monocytes/macrophages. Am J Physiol Endocrinol Metab 296:E1076–E1084CrossRefPubMedGoogle Scholar
  15. 15.
    Saremi A, Schwenke DC, Buchanan TA, Hodis HN, Mack WJ, Banerji M, Bray GA, Clement SC, Henry RR, Kitabchi AE, Mudaliar S, Ratner RE, Stentz FB, Musi N, Tripathy D, DeFronzo RA, Reaven PD (2013) Pioglitazone slows progression of atherosclerosis in prediabetes independent of changes in cardiovascular risk factors. Arterioscler Thromb Vasc Biol 33:393–399CrossRefPubMedGoogle Scholar
  16. 16.
    DeFronzo RA, Tripathy D, Schwenke DC, Banerji M, Bray GA, Buchanan TA, Clement SC, Henry RR, Hodis HN, Kitabchi AE, Mack WJ, Mudaliar S, Ratner RE, Williams K, Stentz FB, Musi N, Reaven PD, ACT NOW Study (2011) Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med 364:1104–1115CrossRefPubMedGoogle Scholar
  17. 17.
    Nissen SE, Nicholls SJ, Wolski K, Nesto R, Kupfer S, Perez A, Jure H, De Larochellière R, Staniloae CS, Mavromatis K, Saw J, Hu B, Lincoff AM, Tuzcu EM, PERISCOPE Investigators (2008) Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA 299:1561–1573CrossRefPubMedGoogle Scholar
  18. 18.
    Nakayama T, Komiyama N, Yokoyama M, Namikawa S, Kuroda N, Kobayashi Y, Komuro I (2010) Pioglitazone induces regression of coronary atherosclerotic plaques in patients with type 2 diabetes mellitus or impaired glucose tolerance: a randomized prospective study using intravascular ultrasound. Int J Cardiol 138:157–165CrossRefPubMedGoogle Scholar
  19. 19.
    Nitta Y, Tahara N, Tahara A, Honda A, Kodama N, Mizoguchi M, Kaida H, Ishibashi M, Hayabuchi N, Ikeda H, Yamagishi S, Imaizumi T (2013) Pioglitazone decreases coronary artery inflammation in impaired glucose tolerance and diabetes mellitus: evaluation by FDG-PET/CT imaging. JACC Cardiovasc Imaging 6:1172–1182CrossRefPubMedGoogle Scholar
  20. 20.
    Takagi T, Okura H, Kobayashi Y, Kataoka T, Taguchi H, Toda I, Tamita K, Yamamuro A, Sakanoue Y, Ito A, Yanagi S, Shimeno K, Waseda K, Yamasaki M, Fitzgerald PJ, Ikeno F, Honda Y, Yoshiyama M, Yoshikawa J, POPPS Investigators (2009) A prospective, multicenter, randomized trial to assess efficacy of pioglitazone on in-stent neointimal suppression in type 2 diabetes: POPPS (Prevention of In-Stent Neointimal Proliferation by Pioglitazone Study). JACC Cardiovasc Interv 2:524–531CrossRefPubMedGoogle Scholar
  21. 21.
    Zhao SJ, Zhong ZS, Qi GX, Shi LY, Chen L, Tian W (2016) Effect of pioglitazone in preventing in-stent restenosis after percutaneous coronary intervention in patients with type 2 diabetes: a meta-analysis. PLoS One 11:e0155273CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Marx N, Wohrle J, Nusser T, Walcher D, Rinker A, Hombach V, Koenig W, Hoher M (2005) Pioglitazone reduces neointima volume after coronary stent implantation: a randomized, placebo-controlled, double-blind trial in nondiabetic patients. Circulation 112:2792–2798CrossRefPubMedGoogle Scholar
  23. 23.
    Cassese S, Byrne RA, Tada T, Pinieck S, Joner M, Ibrahim T, King LA, Fusaro M, Laugwitz KL, Kastrati A (2014) Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography. Heart 100:153–159CrossRefPubMedGoogle Scholar
  24. 24.
    Serruys PW, Ong AT, van Herwerden LA, Sousa JE, Jatene A, Bonnier JJ, Schönberger JP, Buller N, Bonser R, Disco C, Backx B, Hugenholtz PG, Firth BG, Unger F (2005) Five-year outcomes after coronary stenting versus bypass surgery for the treatment of multivessel disease: the final analysis of the Arterial Revascularization Therapies Study (ARTS) randomized trial. J Am Coll Cardiol 46:575–581CrossRefPubMedGoogle Scholar
  25. 25.
    Patel D, Walitt B, Lindsay J, Wilensky RL (2011) Role of pioglitazone in the prevention of restenosis and need for revascularization after bare-metal stent implantation: a meta-analysis. JACC Cardiovasc Interv 4:353–360CrossRefPubMedGoogle Scholar
  26. 26.
    Hong SJ, Kim ST, Kim TJ, Kim EO, Ahn CM, Park JH, Kim JS, Lee KM, Lim DS (2010) Cellular and molecular changes associated with inhibitory effect of pioglitazone on neointimal growth in patients with type 2 diabetes after zotarolimus-eluting stent implantation. Arterioscler Thromb Vasc Biol 30:2655–2665CrossRefPubMedGoogle Scholar
  27. 27.
    Martens FM, Visseren FL, de Koning EJ, Rabelink TJ (2005) Short-term pioglitazone treatment improves vascular function irrespective of metabolic changes in patients with type 2 diabetes. J Cardiovasc Pharmacol 46:773–778CrossRefPubMedGoogle Scholar
  28. 28.
    Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56:559–564CrossRefPubMedGoogle Scholar
  29. 29.
    Igarashi M, Hirata A, Yamaguchi H, Jimbu Y, Tominaga M (2008) Pioglitazone reduces atherogenic outcomes in type 2 diabetic patients. J Atheroscler Thromb 15:34–40CrossRefPubMedGoogle Scholar
  30. 30.
    Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, Sakai N, Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y (2002) Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 106:2767–2770CrossRefPubMedGoogle Scholar
  31. 31.
    Kudoh A, Satoh H, Hirai H, Watanabe T (2011) Pioglitazone upregulates adiponectin receptor 2 in 3T3–L1 adipocytes. Life Sci 88:1055–1062CrossRefPubMedGoogle Scholar
  32. 32.
    Coletta DK, Sriwijitkamol A, Wajcberg E, Tantiwong P, Li M, Prentki M, Madiraju M, Jenkinson CP, Cersosimo E, Musi N, Defronzo RA (2009) Pioglitazone stimulates AMP-activated protein kinase signalling and increases the expression of genes involved in adiponectin signalling, mitochondrial function and fat oxidation in human skeletal muscle in vivo: a randomised trial. Diabetologia 52:723–732CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kanatani Y, Usui I, Ishizuka K, Bukhari A, Fujisaka S, Urakaze M, Haruta T, Kishimoto T, Naka T, Kobayashi M (2007) Effects of pioglitazone on suppressor of cytokine signaling 3 expression: potential mechanisms for its effects on insulin sensitivity and adiponectin expression. Diabetes 56:795–803CrossRefPubMedGoogle Scholar
  34. 34.
    Pereira RI, Leitner JW, Erickson C, Draznin B (2008) Pioglitazone acutely stimulates adiponectin secretion from mouse and human adipocytes via activation of the phosphatidylinositol 3′-kinase. Life Sci 83:638–643CrossRefPubMedGoogle Scholar
  35. 35.
    Otto C, Otto B, Goke B, Pfeiffer AF, Lehrke M, Vogeser M, Spranger J, Parhofer KG (2006) Increase in adiponectin levels during pioglitazone therapy in relation to glucose control, insulin resistance as well as ghrelin and resistin levels. J Endocrinol Investig 29:231–236CrossRefGoogle Scholar
  36. 36.
    Kubota T, Kubota N, Sato H, Inoue M, Kumagai H, Iwamura T, Takamoto I, Kobayashi T, Moroi M, Terauchi Y, Tobe K, Ueki K, Kadowaki T (2016) Pioglitazone ameliorates smooth muscle cell proliferation in cuff-induced neointimal formation by both adiponectin-dependent and -independent pathways. Sci Rep 6:34707CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hong SJ, Choi SC, Cho JY, Joo HJ, Park JH, Yu CW, Lim DS (2015) Pioglitazone increases circulating microRNA-24 with decrease in coronary neointimal hyperplasia in type 2 diabetic patients- optical coherence tomography analysis. Circ J 79:880–888CrossRefPubMedGoogle Scholar
  38. 38.
    Pistrosch F, Herbrig K, Kindel B, Passauer J, Fischer S, Gross P (2005) Rosiglitazone improves glomerular hyperfiltration, renal endothelial dysfunction, and microalbuminuria of incipient diabetic nephropathy in patients. Diabetes 54:2206–2211CrossRefPubMedGoogle Scholar
  39. 39.
    Strongman H, Korhonen P, Williams R, Bahmanyar S, Hoti F, Christopher S, Majak M, Kool-Houweling L, Linder M, Dolin P, Heintjes EM (2017) Pioglitazone and risk of mortality in patients with type 2 diabetes: results from a European multidatabase cohort study. BMJ Open Diabetes Res Care 5:e000364CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yokoyama H, Araki S, Kawai K, Hirao K, Oishi M, Sugimoto K, Sone H, Maegawa H, Kashiwagi A (2015) Pioglitazone treatment and cardiovascular event and death in subjects with type 2 diabetes without established cardiovascular disease (JDDM 36). Diabetes Res Clin Pract 109:485–492CrossRefPubMedGoogle Scholar
  41. 41.
    Hippisley-Cox J, Coupland C (2016) Diabetes treatments and risk of heart failure, cardiovascular disease, and all cause mortality: cohort study in primary care. BMJ 354:i3477CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dormandy JA, Charbonnel B, Eckland DJ, Erdmann E, Massi-Benedetti M, Moules IK, Skene AM, Tan MH, Lefèbvre PJ, Murray GD, Standl E, Wilcox RG, Wilhelmsen L, Betteridge J, Birkeland K, Golay A, Heine RJ, Korányi L, Laakso M, Mokán M, Norkus A, Pirags V, Podar T, Scheen A, Scherbaum W, Schernthaner G, Schmitz O, Skrha J, Smith U, Taton J, PROactive Investigators (2005) Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 366:1279–1289CrossRefPubMedGoogle Scholar
  43. 43.
    Kernan WN, Viscoli CM, Furie KL, Young LH, Inzucchi SE, Gorman M, Guarino PD, Lovejoy AM, Peduzzi PN, Conwit R, Brass LM, Schwartz GG, Adams HP Jr, Berger L, Carolei A, Clark W, Coull B, Ford GA, Kleindorfer D, O’Leary JR, Parsons MW, Ringleb P, Sen S, Spence JD, Tanne D, Wang D, Winder TR, Trial Investigators IRIS (2016) Pioglitazone after ischemic stroke or transient ischemic attack. N Engl J Med 374:1321–1331CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    de Jong M, van der Worp HB, van der Graaf Y, Visseren FLJ, Westerink J (2017) Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials. Cardiovasc Diabetol 16:134CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Liao HW, Saver JL, Wu YL, Chen TH, Lee M, Ovbiagele B (2017) Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: a systematic review and meta-analysis. BMJ Open 7:e013927CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lincoff AM, Wolski K, Nicholls SJ, Nissen SE (2007) Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 298:1180–1188CrossRefPubMedGoogle Scholar
  47. 47.
    Lee M, Saver JL, Liao HW, Lin CH, Ovbiagele B (2017) Pioglitazone for secondary stroke prevention: a systematic review and meta-analysis. Stroke 48:388–393CrossRefPubMedGoogle Scholar
  48. 48.
    Hernandez AV, Usmani A, Rajamanickam A, Moheet A (2011) Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am J Cardiovasc Drugs 11:115–128CrossRefPubMedGoogle Scholar
  49. 49.
    Nesto RW, Bell D, Bonow RO, Fonseca V, Grundy SM, Horton ES, Le Winter M, Porte D, Semenkovich CF, Smith S, Young LH, Kahn R (2004) Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Diabetes Care 27:256–263CrossRefPubMedGoogle Scholar
  50. 50.
    Guan Y, Hao C, Cha DR, Rao R, Lu W, Kohan DE, Magnuson MA, Redha R, Zhang Y, Breyer MD (2005) Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med 11:861–866CrossRefPubMedGoogle Scholar
  51. 51.
    Khodeer DM, Zaitone SA, Farag NE, Moustafa YM (2016) Cardioprotective effect of pioglitazone in diabetic and non-diabetic rats subjected to acute myocardial infarction involves suppression of AGE–RAGE axis and inhibition of apoptosis. Can J Physiol Pharmacol 94:463–476CrossRefPubMedGoogle Scholar
  52. 52.
    Birnbaum Y, Long B, Qian J, Perez-Polo JR, Ye Y (2011) Pioglitazone limits myocardial infarct size, activates Akt, and upregulates cPLA2 and COX-2 in a PPAR-gamma-independent manner. Basic Res Cardiol 106:431–446CrossRefPubMedGoogle Scholar
  53. 53.
    Sakamoto A, Hongo M, Furuta K, Saito K, Nagai R, Ishizaka N (2013) Pioglitazone ameliorates systolic and diastolic cardiac dysfunction in rat model of angiotensin II-induced hypertension. Int J Cardiol 167:409–415CrossRefPubMedGoogle Scholar
  54. 54.
    Ozawa T, Oda H, Oda M, Hosaka Y, Kashimura T, Ozaki K, Tsuchida K, Takahashi K, Miida T, Aizawa Y (2009) Improved cardiac function after sirolimus-eluting stent placement in diabetic patients by pioglitazone: combination therapy with statin. J Cardiol 53:402–409CrossRefPubMedGoogle Scholar
  55. 55.
    Terui G, Goto T, Katsuta M, Aoki I, Ito H (2009) Effect of pioglitazone on left ventricular diastolic function and fibrosis of type III collagen in type 2 diabetic patients. J Cardiol 54:52–58CrossRefPubMedGoogle Scholar
  56. 56.
    Malmberg K, Yusuf S, Gerstein HC, Brown J, Zhao F, Hunt D, Piegas L, Calvin J, Keltai M, Budaj A (2000) Impact of diabetes on long-term prognosis in patients with unstable angina and non-Q-wave myocardial infarction: results of the OASIS (Organization to Assess Strategies for Ischemic Syndromes) Registry. Circulation 102:1014–1019CrossRefPubMedGoogle Scholar
  57. 57.
    Lu CJ, Sun Y, Muo CH, Chen RC, Chen PC, Hsu CY (2013) Risk of stroke with thiazolidinediones: a ten-year nationwide population-based cohort study. Cerebrovasc Dis 36:145–151CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Atsushi Tanaka
    • 1
  • Sho Komukai
    • 2
  • Yoshisato Shibata
    • 3
  • Hiroyoshi Yokoi
    • 4
  • Yoshihiro Iwasaki
    • 5
  • Tomohiro Kawasaki
    • 6
  • Kenji Horiuchi
    • 7
  • Koichi Nakao
    • 7
  • Takafumi Ueno
    • 8
  • Hitoshi Nakashima
    • 9
  • Masahiro Tamashiro
    • 10
  • Yutaka Hikichi
    • 1
  • Mitsuhiro Shimomura
    • 1
  • Motoko Tago
    • 1
  • Shigeru Toyoda
    • 11
  • Teruo Inoue
    • 11
  • Atsushi Kawaguchi
    • 2
  • Koichi Node
    • 1
  • On behalf of the Pioglitazone Reduce Inflammation and Restenosis with and without Drug Eluting Stent (PRIDE) Study Investigators
  1. 1.Department of Cardiovascular MedicineSaga UniversitySagaJapan
  2. 2.Clinical Research CenterSaga University HospitalSagaJapan
  3. 3.Miyazaki Medical Association Hospital, Cardiovascular CenterMiyazakiJapan
  4. 4.Department of CardiologyKokura Memorial HospitalKitakyushuJapan
  5. 5.Department of CardiologyNagasaki Kouseikai HospitalNagasakiJapan
  6. 6.Department of Cardiology, Cardiovascular CenterShin-Koga HospitalKurumeJapan
  7. 7.Division of CardiologySaiseikai Kumamoto Hospital Cardiovascular CenterKumamotoJapan
  8. 8.Division of Cardiovascular Medicine, Department of Internal MedicineKurume University School of MedicineKurumeJapan
  9. 9.Department of CardiologyNational Hospital Organization Kagoshima Medical CenterKagoshimaJapan
  10. 10.Department of CardiologyTomishiro Central HospitalOkinawaJapan
  11. 11.Department of Cardiovascular MedicineDokkyo Medical UniversityMibuJapan

Personalised recommendations