Advertisement

MicroRNA-19b-1 reverses ischaemia-induced heart failure by inhibiting cardiomyocyte apoptosis and targeting Bcl2 l11/BIM

  • Wenbo Yang
  • Yanxin Han
  • Chendie Yang
  • Yanjia Chen
  • Weilin Zhao
  • Xiuxiu Su
  • Ke YangEmail author
  • Wei JinEmail author
Original Article
  • 33 Downloads

Abstract

Ischaemia induces cardiac apoptosis and leads to a loss of cardiac function and heart failure after myocardial infarction. MicroRNA-19b-1 (miR-19b-1), a key member of the miR-17/92 cluster, plays crucial roles in inhibiting apoptosis. However, the role of miR-19b-1 in ischaemia-induced heart failure remains unknown. In this study, ischaemia resulted in cardiac apoptosis and the suppression of miR-19b-1 expression, whereas miR-19b-1 overexpression inhibited ischaemia-induced cardiac apoptosis in vivo and in vitro. Moreover, miR-19b-1 not only attenuated the infarct size but also ameliorated heart failure after myocardial infarction, including the changes in the left ventricular ejection fraction and volume load. Mechanically, miR-19-1 targeted and downregulated the mRNA and protein expression of Bcl2l11/BIM, a pro-apoptotic gene of the Bcl-2 family. Together, these results revealed an essential role of miR-19b-1 in ischaemia-induced heart failure.

Keywords

MicroRNA-19b-1 Heart failure Myocardial infarction Cardiac apoptosis Bcl2-like 11 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81670266 and 81770384), the Science and Technology Commission of Shanghai Municipality (17140902500) and Joint Funds for the innovation of science and Technology, Fujian province (2017Y9007).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DJ, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride PE, Peterson PN, Stevenson LW, Westlake C (2017) 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines and the Heart Failure Society of America. J Am Coll Cardiol 70:776–803CrossRefGoogle Scholar
  2. 2.
    Toischer K, Zhu W, Hunlich M, Mohamed BA, Khadjeh S, Reuter SP, Schafer K, Ramanujam D, Engelhardt S, Field LJ, Hasenfuss G (2017) Cardiomyocyte proliferation prevents failure in pressure overload but not volume overload. J Clin Investig 127:4285–4296CrossRefGoogle Scholar
  3. 3.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisén J (2009) Evidence for cardiomyocyte renewal in humans. Science 324:98–102CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Dong Y, Liu C, Zhao Y, Ponnusamy M, Li P, Wang K (2018) Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. Cell Mol Life Sci 75:291–300CrossRefGoogle Scholar
  5. 5.
    Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20:1603–1614CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Sengupta D, Govindaraj V, Kar S (2018) Alteration in microRNA-17-92 dynamics accounts for differential nature of cellular proliferation. FEBS Lett 592:446–458CrossRefGoogle Scholar
  7. 7.
    Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, Newman J, Bronson RT, Crowley D, Stone JR, Jaenisch R, Sharp PA, Jacks T (2008) Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132:875–886CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Li S, Ren J, Xu N, Zhang J, Geng Q, Cao C, Lee C, Song J, Li J, Chen H (2014) MicroRNA-19b functions as potential anti-thrombotic protector in patients with unstable angina by targeting tissue factor. J Mol Cell Cardiol 75:49–57CrossRefGoogle Scholar
  9. 9.
    Beaumont J, Lopez B, Ravassa S, Hermida N, Jose GS, Gallego I, Valencia F, Gomez-Doblas JJ, de Teresa E, Diez J, Gonzalez A (2017) MicroRNA-19b is a potential biomarker of increased myocardial collagen cross-linking in patients with aortic stenosis and heart failure. Sci Rep 7:40696CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Muck C, Laschober GT, Lepperdinger G, Sampson N, Berger P, Herndler-Brandstetter D, Wieser M, Kuhnel H, Strasser A, Rinnerthaler M, Breitenbach M, Mildner M, Eckhart L, Tschachler E, Trost A, Bauer JW, Papak C, Trajanoski Z, Scheideler M, Grillari-Voglauer R, Grubeck-Loebenstein B, Jansen-Durr P, Grillari J (2010) miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9:291–296CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Zhong C, Wang K, Liu Y, Lv D, Zheng B, Zhou Q, Sun Q, Chen P, Ding S, Xu Y, Huang H (2016) miR-19b controls cardiac fibroblast proliferation and migration. J Cell Mol Med 20:1191–1197CrossRefPubMedCentralGoogle Scholar
  12. 12.
    Tang Y, Zhang YC, Chen Y, Xiang Y, Shen CX, Li YG (2015) The role of miR-19b in the inhibition of endothelial cell apoptosis and its relationship with coronary artery disease. Sci Rep 5:15132CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Schober A, Weber C (2016) Mechanisms of microRNAs in atherosclerosis. Annu Rev Pathol 11:583–616CrossRefGoogle Scholar
  14. 14.
    Mishra PK, Tyagi N, Kumar M, Tyagi SC (2009) MicroRNAs as a therapeutic target for cardiovascular diseases. J Cell Mol Med 13:778–789CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yang K, He YS, Wang XQ, Lu L, Chen QJ, Liu J, Sun Z, Shen WF (2011) MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett 585:854–860CrossRefGoogle Scholar
  16. 16.
    Mavrakis KJ, Van Der Meulen J, Wolfe AL, Liu X, Mets E, Taghon T, Khan AA, Setty M, Rondou P, Vandenberghe P, Delabesse E, Benoit Y, Socci NB, Leslie CS, Van Vlierberghe P, Speleman F, Wendel HG (2011) A cooperative microRNA-tumor suppressor gene network in acute T-cell lymphoblastic leukemia (T-ALL). Nat Genet 43:673–678CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Baumgartner U, Berger F, Hashemi GA, Burgener SS, Monastyrskaya K, Vassella E (2018) miR-19b enhances proliferation and apoptosis resistance via the EGFR signaling pathway by targeting PP2A and BIM in non-small cell lung cancer. Mol Cancer 17:44CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm-Breschkin J, Motoyama N, Gotoh T, Akira S, Bouillet P, Strasser A (2007) ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129:1337–1349CrossRefGoogle Scholar
  19. 19.
    Naftali-Shani N, Levin-Kotler LP, Palevski D, Amit U, Kain D, Landa N, Hochhauser E, Leor J (2017) Left ventricular dysfunction switches mesenchymal stromal cells toward an inflammatory phenotype and impairs their reparative properties via toll-like receptor-4. Circulation 135:2271–2287CrossRefGoogle Scholar
  20. 20.
    Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V, Wang T, Li L, Singh A, Cibi DM, Burdick JA, Singh MK, Jain R, Epstein JA (2017) Epicardial YAP/TAZ orchestrate an immunosuppressive response following myocardial infarction. J Clin Investig 127:899–911CrossRefGoogle Scholar
  21. 21.
    Yin R, Guo L, Gu J, Li C, Zhang W (2018) Over expressing miR-19b-1 suppress breast cancer growth by inhibiting tumor microenvironment induced angiogenesis. Int J Biochem Cell Biol 97:43–51CrossRefGoogle Scholar
  22. 22.
    Yin R, Bao W, Xing Y, Xi T, Gou S (2012) MiR-19b-1 inhibits angiogenesis by blocking cell cycle progression of endothelial cells. Biochem Biophys Res Commun 417:771–776CrossRefGoogle Scholar
  23. 23.
    Chen J, Huang ZP, Seok HY, Ding J, Kataoka M, Zhang Z, Hu X, Wang G, Lin Z, Wang S, Pu WT, Liao R, Wang DZ (2013) mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 112:1557–1566CrossRefPubMedCentralGoogle Scholar
  24. 24.
    Xu J, Tang Y, Bei Y, Ding S, Che L, Yao J, Wang H, Lv D, Xiao J (2016) miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget 7:10870–10878PubMedCentralGoogle Scholar
  25. 25.
    Gyöngyösi M, Winkler J, Ramos I, Do Q, Firat H, McDonald K, González A, Thum T, Díez J, Jaisser F, Pizard A, Zannad F (2017) Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail 19:177–191CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Qian L, Van Laake LW, Huang Y, Liu S, Wendland MF, Srivastava D (2011) miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J Exp Med 208:549–560CrossRefPubMedCentralGoogle Scholar
  27. 27.
    Jiang S, Li C, Olive V, Lykken E, Feng F, Sevilla J, Wan Y, He L, Li QJ (2011) Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118:5487–5497CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Chen CL, Tseng YW, Wu JC, Chen GY, Lin KC, Hwang SM, Hu YC (2015) Suppression of hepatocellular carcinoma by baculovirus-mediated expression of long non-coding RNA PTENP1 and MicroRNA regulation. Biomaterials 44:71–81CrossRefGoogle Scholar
  29. 29.
    Liu SQ, Jiang S, Li C, Zhang B, Li QJ (2014) miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. J Biol Chem 289:12446–12456CrossRefPubMedCentralGoogle Scholar
  30. 30.
    Rao E, Jiang C, Ji M, Huang X, Iqbal J, Lenz G, Wright G, Staudt LM, Zhao Y, McKeithan TW, Chan WC, Fu K (2012) The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia 26:1064–1072CrossRefGoogle Scholar
  31. 31.
    Shukla S, Bhaskaran N, Babcook MA, Fu P, Maclennan GT, Gupta S (2014) Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway. Carcinogenesis 35:452–460CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Cardiology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China
  2. 2.Institute of Cardiovascular DiseaseShanghai Jiao Tong University School of MedicineShanghaiPeople’s Republic of China

Personalised recommendations