Involvement of sphingosine-1-phosphate receptors 2/3 in IR-induced sudden cardiac death

  • Xiaojia Zhang
  • Deqing Chen
  • Jiaqi Wang
  • Jinding Liu
  • Hualin Guo
  • Gengqian ZhangEmail author
Original Article


It has been demonstrated that S1P receptors affect heart ischaemia–reperfusion (IR) induced injury. However, whether S1P receptors affect IR-induced cardiac death has not been investigated. The aim of this paper is to demonstrate the role of S1P receptors in IR-induced cardiac death. Healthy adult male Sprague–Dawley rats were assigned to the following groups: non-operation control group, sham operation group, IR group, IR group pretreated with DMSO, IR group pretreated with S1P3 agonist, IR group pretreated with an antagonist of S1P3, IR group pretreated with S1P2 and S1P3 antagonists, IR group pretreated with heptanol and antagonists of S1P2/3, and IR group pretreated with Gap26 and antagonists of S1P2/3 (heptanol acts as a Cx43 uncoupler and the mimic peptide Gap26 as Cx43 blocker). The groups with S1P2 or S1P3 agonist application before reperfusion were used to assess whether these can be used for therapy of IR. The haemodynamics, electrocardiograms (ECG), infarction area, and mortality rates were recorded. Immunohistological connexin 43 (Cx43) expression in the heart was detected in each group. Blocking S1P2/3 receptors with specific antagonists resulted in an increment of IR-induced mortality, increased infarction size, redistribution of Cx43 expression, as well as affecting the heart function. The infarction size, heart function, and mortality were totally or partially restored in the S1P2, S1P3 agonist-pretreated IR group, and the heptanol/Gap26-treated S1P2/3-blocked IR group. The S1P receptor S1P2/3 and Cx43 are involved in the IR-induced cardiac death.


S1P receptor 2 (S1P2) S1P receptor 3 (S1P3) Connexin 43 (Cx43) ischaemia–reperfusion (IR) Sudden cardiac death (SCD) 



Sudden cardiac death


Acute myocardial infarction




Ischaemia–reperfusion injury


Sphingosine 1-phosphate


High-density lipoprotein




Ventricular tachycardia


Ventricular fibrillation


Conduction velocity


Coronary heart disease


Gap junction


Connexin 43


Ejection fraction


Fractional shortening


Protein kinase C


Coronary artery disease



We thank Academic Proofreading Services Ltd. for the assistance with language editing.


This work was supported by the Natural Science Foundation of China (No. 30900593), the Natural Science Foundation of Shanxi Province, China (No. 201601D011091), and the Scientific Research Foundation for the Chinese Scholars of Shanxi Province, China, who returning from overseas (No. 2011-172) and Shanxi Scholarship Council of China (2016-055), and Key Research and Development Projects of Shanxi Province(201803D31069)..

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

380_2018_1323_MOESM1_ESM.docx (22 kb)
Supplementary file1 (DOCX 22 kb)
380_2018_1323_MOESM2_ESM.tif (491 kb)
Supplementary file 2 (TIFF 491 kb)
380_2018_1323_MOESM3_ESM.tif (2 mb)
Supplementary file 3 (TIFF 2074 kb)
380_2018_1323_MOESM4_ESM.tif (131 kb)
Supplementary file 4 (TIFF 132 kb)
380_2018_1323_MOESM5_ESM.tif (8.5 mb)
Supplementary file 5 (TIFF 8661 kb)


  1. 1.
    Chitnis N, Vooturi S, Hygriv Rao B (2014) Sudden cardiac death early after ST elevation myocardial infarction with and without severe left ventricular dysfunction. Indian Heart J 66:569–573CrossRefGoogle Scholar
  2. 2.
    Israel CW (2014) Mechanisms of sudden cardiac death. Indian Heart J 66(Suppl 1):S10–17CrossRefGoogle Scholar
  3. 3.
    Southerland EM, Gibbons DD, Smith SB, Sipe A, Williams CA, Beaumont E, Armour JA, Foreman RD, Ardell JL (2012) Activated cranial cervical cord neurons affect left ventricular infarct size and the potential for sudden cardiac death. Auton Neurosci 169:34–42CrossRefGoogle Scholar
  4. 4.
    Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609CrossRefGoogle Scholar
  5. 5.
    Quindry JC, Hamilton KL (2013) Exercise and cardiac preconditioning against ischemia reperfusion injury. Curr Cardiol Rev 9:220–229CrossRefGoogle Scholar
  6. 6.
    Badimon JJ, Ibanez B (2010) Increasing high-density lipoprotein as a therapeutic target in atherothrombotic disease. Rev Esp Cardiol 63:323–333CrossRefGoogle Scholar
  7. 7.
    Santos-Gallego CG, Badimon JJ, Rosenson RS (2014) Beginning to understand high-density lipoproteins. Endocrinol Metab Clin North Am 43:913–947CrossRefGoogle Scholar
  8. 8.
    Theilmeier G, Schmidt C, Herrmann J, Keul P, Schafers M, Herrgott I, Mersmann J, Larmann J, Hermann S, Stypmann J, Schober O, Hildebrand R, Schulz R, Heusch G, Haude M, von Wnuck Lipinski K, Herzog C, Schmitz M, Erbel R, Chun J, Levkau B (2006) High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114:1403–1409CrossRefGoogle Scholar
  9. 9.
    Means CK, Xiao CY, Li Z, Zhang T, Omens JH, Ishii I, Chun J, Brown JH (2007) Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 292:H2944–H2951CrossRefGoogle Scholar
  10. 10.
    Vessey DA, Kelley M, Li L, Huang Y (2009) Sphingosine protects aging hearts from ischemia/reperfusion injury: superiority to sphingosine 1-phosphate and ischemic pre- and post-conditioning. Oxid Med Cell Longev 2:146–151CrossRefGoogle Scholar
  11. 11.
    Santos-Gallego CG, Vahl TP, Goliasch G, Picatoste B, Arias T, Ishikawa K, Njerve IU, Sanz J, Narula J, Sengupta PP, Hajjar RJ, Fuster V, Badimon JJ (2016) Sphingosine-1-phosphate receptor agonist fingolimod increases myocardial salvage and decreases adverse postinfarction left ventricular remodeling in a porcine model of ischemia/reperfusion. Circulation 133:954–966CrossRefGoogle Scholar
  12. 12.
    Christoffersen C, Obinata H, Kumaraswamy SB, Galvani S, Ahnstrom J, Sevvana M, Egerer-Sieber C, Muller YA, Hla T, Nielsen LB, Dahlback B (2011) Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proc Natl Acad Sci U S A 108:9613–9618CrossRefGoogle Scholar
  13. 13.
    Badimon JJ, Santos-Gallego CG (2015) HDL dysfunction: is the answer in the Sphinx's riddle? J Am Coll Cardiol 66:1486–1488CrossRefGoogle Scholar
  14. 14.
    Sattler K, Graler M, Keul P, Weske S, Reimann CM, Jindrova H, Kleinbongard P, Sabbadini R, Brocker-Preuss M, Erbel R, Heusch G, Levkau B (2015) Defects of high-density lipoproteins in coronary artery disease caused by low sphingosine-1-phosphate content: correction by sphingosine-1-phosphate-loading. J Am Coll Cardiol 66:1470–1485CrossRefGoogle Scholar
  15. 15.
    Ahmed N, Linardi D, Decimo I, Mehboob R, Gebrie MA, Innamorati G, Luciani GB, Faggian G, Rungatscher A (2017) Characterization and expression of sphingosine 1-phosphate receptors in human and rat heart. Front Pharmacol 8:312CrossRefGoogle Scholar
  16. 16.
    Zhang GQ, Liang Z, Zhang XJ (2014) Sphingosine-1-phosphate receptors respond differently to early myocardial ischemia and ischemia-reperfusion in vivo. Sheng Li Xue Bao 66:169–174Google Scholar
  17. 17.
    Somers SJ, Frias M, Lacerda L, Opie LH, Lecour S (2012) Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection. Cardiovasc Drugs Ther 26:227–237CrossRefGoogle Scholar
  18. 18.
    Morel S, Frias MA, Rosker C, James RW, Rohr S, Kwak BR (2012) The natural cardioprotective particle HDL modulates connexin43 gap junction channels. Cardiovasc Res 93:41–49CrossRefGoogle Scholar
  19. 19.
    Veenstra RD (2012) Sphingosine-1-phosphate signals the way for Cx43-mediated cardioprotection. Cardiovasc Res 93:8–9CrossRefGoogle Scholar
  20. 20.
    Jain SK, Schuessler RB, Saffitz JE (2003) Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 92:1138–1144CrossRefGoogle Scholar
  21. 21.
    Duffy HS (2012) The molecular mechanisms of gap junction remodeling. Heart Rhythm 9:1331–1334CrossRefGoogle Scholar
  22. 22.
    Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL (2009) Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Circ Res 104:1103–1112CrossRefGoogle Scholar
  23. 23.
    Hesketh GG, Shah MH, Halperin VL, Cooke CA, Akar FG, Yen TE, Kass DA, Machamer CE, Van Eyk JE, Tomaselli GF (2010) Ultrastructure and regulation of lateralized connexin43 in the failing heart. Circ Res 106:1153–1163CrossRefGoogle Scholar
  24. 24.
    Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI (2001) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 88:333–339CrossRefGoogle Scholar
  25. 25.
    Manjarrez-Marmolejo J, Franco-Perez J (2016) Gap junction blockers: an overview of their effects on induced seizures in animal models. Curr Neuropharmacol 14:759–771CrossRefGoogle Scholar
  26. 26.
    Rodriguez-Sinovas A, Cabestrero A, Lopez D, Torre I, Morente M, Abellan A, Miro E, Ruiz-Meana M, Garcia-Dorado D (2007) The modulatory effects of connexin 43 on cell death/survival beyond cell coupling. Prog Biophys Mol Biol 94:219–232CrossRefGoogle Scholar
  27. 27.
    Walker MJ, Curtis MJ, Hearse DJ, Campbell RW, Janse MJ, Yellon DM, Cobbe SM, Coker SJ, Harness JB, Harron DW et al (1988) The Lambeth conventions: guidelines for the study of arrhythmias in ischaemia infarction, and reperfusion. Cardiovasc Res 22:447–455CrossRefGoogle Scholar
  28. 28.
    Lee KH (2017) Expressional changes of connexin isoform genes in the rat caput epididymis exposed to flutamide or estradiol benzoate at the early postnatal age. Dev Reprod 21:317–325CrossRefGoogle Scholar
  29. 29.
    Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62:426–436CrossRefGoogle Scholar
  30. 30.
    Palee S, Weerateerangkul P, Chinda K, Chattipakorn SC, Chattipakorn N (2013) Mechanisms responsible for beneficial and adverse effects of rosiglitazone in a rat model of acute cardiac ischaemia–reperfusion. Exp Physiol 98:1028–1037CrossRefGoogle Scholar
  31. 31.
    Hofmann U, Hu K, Walter F, Burkard N, Ertl G, Bauersachs J, Ritter O, Frantz S, Bonz A (2010) Pharmacological pre- and post-conditioning with the sphingosine-1-phosphate receptor modulator FTY720 after myocardial ischaemia–reperfusion. Br J Pharmacol 160:1243–1251CrossRefGoogle Scholar
  32. 32.
    Garcia-Dorado D, Inserte J, Ruiz-Meana M, Gonzalez MA, Solares J, Julia M, Barrabes JA, Soler-Soler J (1997) Gap junction uncoupler heptanol prevents cell-to-cell progression of hypercontracture and limits necrosis during myocardial reperfusion. Circulation 96:3579–3586CrossRefGoogle Scholar
  33. 33.
    Johansen D, Sanden E, Hagve M, Chu X, Sundset R, Ytrehus K (2011) Heptanol triggers cardioprotection via mitochondrial mechanisms and mitochondrial potassium channel opening in rat hearts. Acta Physiol (Oxf) 201:435–444CrossRefGoogle Scholar
  34. 34.
    Chen BP, Mao HJ, Fan FY, Bruce IC, Xia Q (2005) Delayed uncoupling contributes to the protective effect of heptanol against ischaemia in the rat isolated heart. Clin Exp Pharmacol Physiol 32:655–662CrossRefGoogle Scholar
  35. 35.
    Hawat G, Benderdour M, Rousseau G, Baroudi G (2010) Connexin 43 mimetic peptide Gap26 confers protection to intact heart against myocardial ischemia injury. Pflug Arch 460:583–592CrossRefGoogle Scholar
  36. 36.
    Hawat G, Helie P, Baroudi G (2012) Single intravenous low-dose injections of connexin 43 mimetic peptides protect ischemic heart in vivo against myocardial infarction. J Mol Cell Cardiol 53:559–566CrossRefGoogle Scholar
  37. 37.
    Lubkemeier I, Bosen F, Kim JS, Sasse P, Malan D, Fleischmann BK, Willecke K (2015) Human connexin43e42k mutation from a sudden infant death victim leads to impaired ventricular activation and neonatal death in mice. Circ Cardiovasc Genet 8:21–29CrossRefGoogle Scholar
  38. 38.
    Elmas E, Popp T, Lang S, Dempfle CE, Kalsch T, Borggrefe M (2010) Sudden death: do cytokines and prothrombotic peptides contribute to the occurrence of ventricular fibrillation during acute myocardial infarction? Int J Cardiol 145:118–119CrossRefGoogle Scholar
  39. 39.
    Neubauer J, Lecca MR, Russo G, Bartsch C, Medeiros-Domingo A, Berger W, Haas C (2018) Exome analysis in 34 sudden unexplained death (SUD) victims mainly identified variants in channelopathy-associated genes. Int J Legal Med 132:1057–1065CrossRefGoogle Scholar
  40. 40.
    Wellens HJ, Schwartz PJ, Lindemans FW, Buxton AE, Goldberger JJ, Hohnloser SH, Huikuri HV, Kaab S, La Rovere MT, Malik M, Myerburg RJ, Simoons ML, Swedberg K, Tijssen J, Voors AA, Wilde AA (2014) Risk stratification for sudden cardiac death: current status and challenges for the future. Eur Heart J 35:1642–1651CrossRefGoogle Scholar
  41. 41.
    Morel S, Christoffersen C, Axelsen LN, Montecucco F, Rochemont V, Frias MA, Mach F, James RW, Naus CC, Chanson M, Lampe PD, Nielsen MS, Nielsen LB, Kwak BR (2016) Sphingosine-1-phosphate reduces ischaemia–reperfusion injury by phosphorylating the gap junction protein connexin43. Cardiovasc Res 109:385–396CrossRefGoogle Scholar
  42. 42.
    Egom EE, Ke Y, Musa H, Mohamed TM, Wang T, Cartwright E, Solaro RJ, Lei M (2010) FTY720 prevents ischemia/reperfusion injury-associated arrhythmias in an ex vivo rat heart model via activation of Pak1/Akt signaling. J Mol Cell Cardiol 48:406–414CrossRefGoogle Scholar
  43. 43.
    Egom EE, Kruzliak P, Rotrekl V, Lei M (2015) The effect of the sphingosine-1-phosphate analogue FTY720 on atrioventricular nodal tissue. J Cell Mol Med 19:1729–1734CrossRefGoogle Scholar
  44. 44.
    Burstein B, Jayaraman D, Husa R (2016) Early left ventricular ejection fraction as a predictor of survival after cardiac arrest. Acute Card Care 18:35–39CrossRefGoogle Scholar
  45. 45.
    Chugh SS (2017) Sudden cardiac death in 2017: spotlight on prediction and prevention. Int J Cardiol 237:2–5CrossRefGoogle Scholar
  46. 46.
    Miura T, Ohnuma Y, Kuno A, Tanno M, Ichikawa Y, Nakamura Y, Yano T, Miki T, Sakamoto J, Shimamoto K (2004) Protective role of gap junctions in preconditioning against myocardial infarction. Am J Physiol Heart Circ Physiol 286:H214–221CrossRefGoogle Scholar
  47. 47.
    Fontes MS, van Veen TA, de Bakker JM, van Rijen HV (2012) Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta 1818:2020–2029CrossRefGoogle Scholar
  48. 48.
    Michela P, Velia V, Aldo P, Ada P (2015) Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768:71–76CrossRefGoogle Scholar
  49. 49.
    Dhein S, Rothe S, Busch A, Rojas Gomez DM, Boldt A, Reutemann A, Seidel T, Salameh A, Pfannmuller B, Rastan A, Kostelka M, Mohr FW (2011) Effects of metoprolol therapy on cardiac gap junction remodelling and conduction in human chronic atrial fibrillation. Br J Pharmacol 164:607–616CrossRefGoogle Scholar
  50. 50.
    Mayama T, Matsumura K, Lin H, Ogawa K, Imanaga I (2007) Remodelling of cardiac gap junction connexin 43 and arrhythmogenesis. Exp Clin Cardiol 12:67–76Google Scholar
  51. 51.
    Lo CW (2000) Role of gap junctions in cardiac conduction and development: insights from the connexin knockout mice. Circ Res 87:346–348CrossRefGoogle Scholar
  52. 52.
    Murakami A, Takasugi H, Ohnuma S, Koide Y, Sakurai A, Takeda S, Hasegawa T, Sasamori J, Konno T, Hayashi K, Watanabe Y, Mori K, Sato Y, Takahashi A, Mochizuki N, Takakura N (2010) Sphingosine 1-phosphate (S1P) regulates vascular contraction via S1P3 receptor: investigation based on a new S1P3 receptor antagonist. Mol Pharmacol 77:704–713CrossRefGoogle Scholar
  53. 53.
    Thimm J, Mechler A, Lin H, Rhee S, Lal R (2005) Calcium-dependent open/closed conformations and interfacial energy maps of reconstituted hemichannels. J Biol Chem 280:10646–10654CrossRefGoogle Scholar
  54. 54.
    Keul P, van Borren MM, Ghanem A, Muller FU, Baartscheer A, Verkerk AO, Stumpel F, Schulte JS, Hamdani N, Linke WA, van Loenen P, Matus M, Schmitz W, Stypmann J, Tiemann K, Ravesloot JH, Alewijnse AE, Hermann S, Spijkers LJ, Hiller KH, Herr D, Heusch G, Schafers M, Peters SL, Chun J, Levkau B (2016) Sphingosine-1-phosphate receptor 1 regulates cardiac function by modulating Ca2+ sensitivity and Na+/H+ exchange and mediates protection by ischemic preconditioning. J Am Heart Assoc 5:e003393CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  • Xiaojia Zhang
    • 1
  • Deqing Chen
    • 1
  • Jiaqi Wang
    • 1
  • Jinding Liu
    • 1
  • Hualin Guo
    • 1
  • Gengqian Zhang
    • 1
  1. 1.Department of Forensic Biology, School of Forensic MedicineShanxi Medical UniversityJinzhongChina

Personalised recommendations