Skip to main content
Log in

Atorvastatin induces associated reductions in platelet P-selectin, oxidized low-density lipoprotein, and interleukin-6 in patients with coronary artery diseases

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

The development and progression of atherosclerosis comprises various processes, such as endothelial dysfunction, chronic inflammation, thrombus formation, and lipid profile modification. Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors that have pleiotropic effects in addition to cholesterol-lowering properties. However, the mechanisms of these effects are not completely understood. Here, we investigated whether atorvastatin affects the levels of malondialdehyde-modified low-density lipoprotein (MDALDL), an oxidized LDL, the proinflammatory cytokine interleukin-6 (IL-6), or platelet P-selectin, a marker of platelet activation, relative to that of LDL cholesterol (LDL-C). Forty-eight patients with coronary artery disease and hyperlipidemia were separated into two groups that were administered with (atorvastatin group) or without (control group) atorvastatin. The baseline MDA-LDL level in all participants significantly correlated with LDL-C (r = 0.71, P < 0.01) and apolipoprotein B levels (r = 0.66, P < 0.01). Atorvastatin (10 mg/day) significantly reduced the LDL-C level within 4 weeks and persisted for a further 8 weeks of administration. Atorvastatin also reduced the MDA-LDL level within 4 weeks and further reduced it over the next 8 weeks. Platelet P-selectin expression did not change until 4 weeks of administration and then significantly decreased at 12 weeks, whereas the IL-6 level was gradually, but not significantly, reduced at 12 weeks. In contrast, none of these parameters significantly changed in the control group within these time frames. The reduction (%) in IL-6 between 4 and 12 weeks after atorvastatin administration significantly correlated with that of MDALDL and of platelet P-selectin (r = 0.65, P < 0.05 and r = 0.70, P < 0.05, respectively). These results suggested that the positive effects of atorvastatin on the LDL-C oxidation, platelet activation and inflammation that are involved in atherosclerotic processes are exerted in concert after lowering LDL-C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966

    Article  PubMed  CAS  Google Scholar 

  2. Krauss RM, Burke DJ (1982) Identification of multiple subclasses of plasma low density lipoproteins in normal humans. J Lipid Res 23:97–104

    PubMed  CAS  Google Scholar 

  3. Tamura A, Watanabe T, Nasu M (2003) Effects of atorvastatin and pravastatin on malondialdehyde-modified LDL in hypercholesterolemic patients. Circ J 67:816–820

    Article  PubMed  CAS  Google Scholar 

  4. Yamazaki K, Bujo H, Taira K, Itou N, Shibasaki M, Takahashi K, Saito Y (2004) Increased circulating malondialdehyde-modified LDL in the patients with familial combined hyperlipidemia and its relation with the hepatic lipase activity. Atherosclerosis 172: 181–187

    Article  PubMed  CAS  Google Scholar 

  5. Miyazaki T, Shimada K, Sato O, Kotani K, Kume A, Sumiyoshi K, Sato Y, Ohmura H, Watanabe Y, Mokuno H, Daida H (2005) Circulating malondialdehyde-modified LDL and atherogenic lipoprotein profiles measured by nuclear magnetic resonance spectroscopy in patients with coronary artery disease. Atherosclerosis 179:139–145

    Article  PubMed  CAS  Google Scholar 

  6. Tanaga K, Bujo H, Inoue M, Mikami K, Kotani K, Takahashi K, Kanno T, Saito Y (2002) Increased circulating malondialdehydemodified LDL levels in patients with coronary artery diseases and their association with peak sizes of LDL particles. Arterioscler Thromb Vasc Biol 22:662–666

    Article  PubMed  CAS  Google Scholar 

  7. Karvonen J, Paivansalo M, Kesaniemi YA, Horkko S (2003) Immunoglobulin M type of autoantibodies to oxidized low-density lipoprotein has an inverse relation to carotid artery atherosclerosis. Circulation 108:2107–2112

    Article  PubMed  CAS  Google Scholar 

  8. Schror K (1990) Platelet reactivity and arachidonic acid metabolism in type II hyperlipoproteinaemia and its modification by cholesterol-lowering agents. Eicosanoids 3:67–73

    PubMed  CAS  Google Scholar 

  9. Keating FK, Whitaker DA, Kabbani SS, Ricci MA, Sobel BE, Schneider DJ (2004) Relation of augmented platelet reactivity to the magnitude of distribution of atherosclerosis. Am J Cardiol 94:725–728

    Article  PubMed  Google Scholar 

  10. Zeller JA, Tschoepe D, Kessler C (1999) Circulating platelets show increased activation in patients with acute cerebral ischemia. Thromb Haemost 81:373–377

    PubMed  CAS  Google Scholar 

  11. Puccetti L, Sawamura T, Pasqui AL, Pastorelli M, Auteri A, Bruni F (2005) Atorvastatin reduces platelet-oxidized-LDL receptor expression in hypercholesterolaemic patients. Eur J Clin Invest 35:47–51

    Article  PubMed  CAS  Google Scholar 

  12. Johnson RC, Chapman SM, Dong ZM, Ordovas JM, Mayadas TN, Herz J, Hynes RO, Schaefer EJ, Wagner DD (1997) Absence of P-selectin delays fatty streak formation in mice. J Clin Invest 99:1037–1043

    Article  PubMed  CAS  Google Scholar 

  13. Cha JK, Jeong MH, Kim JW (2004) Statin reduces the platelet P-selectin expression in atherosclerotic ischemic stroke. J Thromb Thrombolysis 18:39–42

    Article  PubMed  CAS  Google Scholar 

  14. Weinhold B, Bader A, Poli V, Ruther U (1997) Interleukin-6 is necessary, but not sufficient, for induction of the human C-reactive protein gene in vivo. Biochem J 325(Pt 3):617–621

    PubMed  CAS  Google Scholar 

  15. Yeh ET, Willerson JT (2003) Coming of age of C-reactive protein: using inflammation markers in cardiology. Circulation 107:370–371

    Article  PubMed  Google Scholar 

  16. Ridker PM, Buring JE, Shih J, Matias M, Hennekens CH (1998) Prospective study of C-reactive protein and the risk of future cardiovascular events among apparently healthy women. Circulation 98:731–733

    PubMed  CAS  Google Scholar 

  17. Haverkate F, Thompson SG, Pyke SD, Gallimore JR, Pepys MB (1997) Production of C-reactive protein and risk of coronary events in stable and unstable angina. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. Lancet 349:462–466

    Article  PubMed  CAS  Google Scholar 

  18. Ridker PM, Rifai N, Stampfer MJ, Hennekens CH (2000) Plasma concentration of interleukin-6 and the risk of future myocardial infarction among apparently healthy men. Circulation 101: 1767–1772

    PubMed  CAS  Google Scholar 

  19. Lindmark E, Diderholm E, Wallentin L, Siegbahn A (2001) Relationship between interleukin 6 and mortality in patients with unstable coronary artery disease: effects of an early invasive or noninvasive strategy. JAMA 286:2107–2113

    Article  PubMed  CAS  Google Scholar 

  20. Mohamed-Ali V, Pinkney JH, Coppack SW (1998) Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord 22:1145–1158

    Article  PubMed  CAS  Google Scholar 

  21. Greenberg AS, Nordan RP, McIntosh J, Calvo JC, Scow RO, Jablons D (1992) Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res 52: 4113–4116

    PubMed  CAS  Google Scholar 

  22. Van Snick J (1990) Interleukin-6: an overview. Annu Rev Immunol 8:253–278

    Article  PubMed  Google Scholar 

  23. Massy ZA, Keane WF, Kasiske BL (1996) Inhibition of the mevalonate pathway: benefits beyond cholesterol reduction? Lancet 347:102–103

    Article  PubMed  CAS  Google Scholar 

  24. Influence of pravastatin and plasma lipids on clinical events in the West of Scotland Coronary Prevention Study (WOSCOPS) (1998) Circulation 97:1440–1445

    Google Scholar 

  25. Brown BG, Zhao XQ, Sacco DE, Albers JJ (1993) Lipid lowering and plaque regression. New insights into prevention of plaque disruption and clinical events in coronary disease. Circulation 87:1781–1791

    PubMed  CAS  Google Scholar 

  26. Pekkanen J, Linn S, Heiss G, Suchindran CM, Leon A, Rifkind BM, Tyroler HA (1990) Ten-year mortality from cardiovascular disease in relation to cholesterol level among men with and without preexisting cardiovascular disease. N Engl J Med 322:1700–1707

    PubMed  CAS  Google Scholar 

  27. Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273:24266–24271

    Article  PubMed  CAS  Google Scholar 

  28. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010

    Article  PubMed  CAS  Google Scholar 

  29. Brouet A, Sonveaux P, Dessy C, Moniotte S, Balligand JL, Feron O (2001) Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res 89:866–873

    Article  PubMed  CAS  Google Scholar 

  30. Wolfrum S, Jensen KS, Liao JK (2003) Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol 23:729–736

    Article  PubMed  CAS  Google Scholar 

  31. Takemoto M, Liao JK (2001) Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler Thromb Vasc Biol 21:1712–1719

    Article  PubMed  CAS  Google Scholar 

  32. Kanadasi M, Cayli M, Demirtas M, Inal T, Demir M, Koc M, Avkarogullari M, Donmez Y, Usal A, Alhan CC, San M (2006) The effect of early statin treatment on inflammation and cardiac events in acute coronary syndrome patients with low-density lipoprotein cholesterol. Heart Vessels 21:291–297

    Article  PubMed  Google Scholar 

  33. Michelson AD (1996) Flow cytometry: a clinical test of platelet function. Blood 87:4925–4936

    PubMed  CAS  Google Scholar 

  34. Kinlay S, Schwartz GG, Olsson AG, Rifai N, Leslie SJ, Sasiela WJ, Szarek M, Libby P, Ganz P (2003) High-dose atorvastatin enhances the decline in inflammatory markers in patients with acute coronary syndromes in the MIRACL study. Circulation 108:1560–1566

    Article  PubMed  CAS  Google Scholar 

  35. Doo YC, Han SJ, Lee JH, Cho GY, Hong KS, Han KR, Lee NH, Oh DJ, Ryu KH, Rhim CY, Lee KH, Lee Y (2004) Associations among oxidized low-density lipoprotein antibody, C-reactive protein, interleukin-6, and circulating cell adhesion molecules in patients with unstable angina pectoris. Am J Cardiol 93:554–558

    Article  PubMed  CAS  Google Scholar 

  36. Bruni F, Pasqui AL, Pastorelli M, Bova G, Di Renzo M, Cercigani M, Leo A, Auteri A, Puccetti L (2004) Effect of atorvastatin on different fibrinolysis mechanisms in hypercholesterolemic subjects. Int J Cardiol 95:269–274

    Article  PubMed  CAS  Google Scholar 

  37. Steinberg D (1995) Role of oxidized LDL and antioxidants in atherosclerosis. Adv Exp Med Biol 369:39–48

    PubMed  CAS  Google Scholar 

  38. Norata GD, Pirillo A, Catapano AL (2003) Statins and oxidative stress during atherogenesis. J Cardiovasc Risk 10:181–189

    Article  PubMed  Google Scholar 

  39. Massy ZA, Kim Y, Guijarro C, Kasiske BL, Keane WF, O’Donnell MP (2000) Low-density lipoprotein-induced expression of interleukin-6, a marker of human mesangial cell inflammation: effects of oxidation and modulation by lovastatin. Biochem Biophys Res Commun 267:536–540

    Article  PubMed  CAS  Google Scholar 

  40. Sugiyama M, Ohashi M, Takase H, Sato K, Ueda R, Dohi Y (2005) Effects of atorvastatin on inflammation and oxidative stress. Heart Vessels 20:133–136

    Article  PubMed  Google Scholar 

  41. Marz W, Winkler K, Nauck M, Bohm BO, Winkelmann BR (2003) Effects of statins on C-reactive protein and interleukin-6 (the Ludwigshafen Risk and Cardiovascular Health study). Am J Cardiol 92:305–308

    Article  PubMed  CAS  Google Scholar 

  42. Labios M, Martinez M, Gabriel F, Guiral V, Martinez E, Aznar J (2005) Effect of atorvastatin upon platelet activation in hypercholesterolemia, evaluated by flow cytometry. Thromb Res 115:263–270

    Article  PubMed  CAS  Google Scholar 

  43. Puccetti L, Pasqui AL, Pastorelli M, Bova G, Cercignani M, Palazzuoli A, Angori P, Auteri A, Bruni F (2002) Time-dependent effect of statins on platelet function in hypercholesterolaemia. Eur J Clin Invest 32:901–908

    Article  PubMed  CAS  Google Scholar 

  44. Huhle G, Abletshauser C, Mayer N, Weidinger G, Harenberg J, Heene DL (1999) Reduction of platelet activity markers in type II hypercholesterolemic patients by a HMG-CoA-reductase inhibitor. Thromb Res 95:229–234

    Article  PubMed  CAS  Google Scholar 

  45. Gurbel PA, Kereiakes DJ, Serebruany VL (2000) Soluble P-selectin is not a surrogate marker for platelet P-selectin: evidence from a multicenter chest pain study group. J Thromb Thrombolysis 10:15–22

    Article  PubMed  CAS  Google Scholar 

  46. Abrams C, Shattil SJ (1991) Immunological detection of activated platelets in clinical disorders. Thromb Haemost 65:467–473

    PubMed  CAS  Google Scholar 

  47. Munford RS (2001) Statins and the acute-phase response. N Engl J Med 344:2016–2018

    Article  PubMed  CAS  Google Scholar 

  48. Peng J, Friese P, George JN, Dale GL, Burstein SA (1994) Alteration of platelet function in dogs mediated by interleukin-6. Blood 83:398–403

    PubMed  CAS  Google Scholar 

  49. Yamamoto K, Shimokawa T, Kojima T, Loskutoff DJ, Saito H (1999) Regulation of murine protein C gene expression in vivo: effects of tumor necrosis factor-alpha, interleukin-1, and transforming growth factor-beta. Thromb Haemost 82:1297–1301

    PubMed  CAS  Google Scholar 

  50. Kirchhofer D, Tschopp TB, Hadvary P, Baumgartner HR (1994) Endothelial cells stimulated with tumor necrosis factor-alpha express varying amounts of tissue factor resulting in inhomogenous fibrin deposition in a native blood flow system. Effects of thrombin inhibitors. J Clin Invest 93:2073–2083

    Article  PubMed  CAS  Google Scholar 

  51. Gurgun C, Ildizli M, Yavuzgil O, Sin A, Apaydin A, Cinar C, Kultursay H (2008) The effects of short term statin treatment on left ventricular function and inflammatory markers in patients with chronic heart failure. Int J Cardiol 123:102–107

    Article  PubMed  Google Scholar 

  52. Gebuhrer V, Murphy JF, Bordet JC, Reck MP, McGregor JL (1995) Oxidized low-density lipoprotein induces the expression of P-selectin (GMP140/PADGEM/CD62) on human endothelial cells. Biochem J 306(Pt 1):293–298

    PubMed  CAS  Google Scholar 

  53. Chen LY, Mehta P, Mehta JL (1996) Oxidized LDL decreases L-arginine uptake and nitric oxide synthase protein expression in human platelets: relevance of the effect of oxidized LDL on platelet function. Circulation 93:1740–1746

    PubMed  CAS  Google Scholar 

  54. Zhao B, Dierichs R, Miller FN, Dean WL (1996) Oxidized low density lipoprotein inhibits platelet plasma membrane Ca(2+)-ATPase. Cell Calcium 19:453–458

    Article  PubMed  CAS  Google Scholar 

  55. Retzer M, Siess W, Essler M (2000) Mildly oxidised low density lipoprotein induces platelet shape change via Rho-kinasedependent phosphorylation of myosin light chain and moesin. FEBS Lett 466:70–74

    Article  PubMed  CAS  Google Scholar 

  56. Weidtmann A, Scheithe R, Hrboticky N, Pietsch A, Lorenz R, Siess W (1995) Mildly oxidized LDL induces platelet aggregation through activation of phospholipase A2. Arterioscler Thromb Vasc Biol 15:1131–1138

    PubMed  CAS  Google Scholar 

  57. Schafer A, Fraccarollo D, Eigenthaler M, Tas P, Firnschild A, Frantz S, Ertl G, Bauersachs J (2005) Rosuvastatin reduces platelet activation in heart failure: role of NO bioavailability. Arterioscler Thromb Vasc Biol 25:1071–1077

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Ikeda.

Additional information

Hiroyuki Oka and Seiji Koga contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oka, H., Ikeda, S., Koga, S. et al. Atorvastatin induces associated reductions in platelet P-selectin, oxidized low-density lipoprotein, and interleukin-6 in patients with coronary artery diseases. Heart Vessels 23, 249–256 (2008). https://doi.org/10.1007/s00380-008-1038-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-008-1038-9

Key words

Navigation