Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Uncertainty in Tropical Cyclone Intensity Predictions due to Uncertainty in Initial Conditions

  • 11 Accesses

Abstract

Focusing on the role of initial condition uncertainty, we use WRF initial perturbation ensemble forecasts to investigate the uncertainty in intensity forecasts of Tropical Cyclone (TC) Rammasun (1409), which is the strongest TC to have made landfall in China during the past 50 years. Forecast results indicate that initial condition uncertainty leads to TC forecast uncertainty, particularly for TC intensity. This uncertainty increases with forecast time, with a more rapid and significant increase after 24 h. The predicted TC develops slowly before 24 h, and at this stage the TC in the member forecasting the strongest final TC is not the strongest among all members. However, after 24 h, the TC in this member strengthens much more than that the TC in other members. The variations in convective instability, precipitation, surface upward heat flux, and surface upward water vapor flux show similar characteristics to the variation in TC intensity, and there is a strong correlation between TC intensity and both the surface upward heat flux and the surface upward water vapor flux. The initial condition differences that result in the maximum intensity difference are smaller than the errors in the analysis system. Differences in initial humidity, and to a lesser extent initial temperature differences, at the surface and at lower heights are the key factors leading to differences in the forecasted TC intensity. These differences in initial humidity and temperature relate to both the overall values and distribution of these parameters.

摘 要

关注初始条件的不确定性, 利用WRF模式和初值扰动的集合预报, 针对过去50年间登陆中国的最强热带气旋 “威马逊” (1409), 开展了热带气旋强度预报的不确定性研究. 结果显示, 初始条件的不确定性使得热带气旋的预报存在着不确定性, 这种不确定性主要反映在热带气旋强度的预报上, 并随时间而增大, 尤其在预报24h后迅速增大, 第48h时, 强度预报的最大差异可以达到37hPa (最低海平面气压) 和14 m s−1 (10m最大风速); 预报的前24h, 热带气旋发展缓慢, 所有成员中在第48h时强度最强的成员在这一时期的强度要弱于其他一些成员, 但预报24h后, 该成员快速发展, 其强度的增强比其他成员更为迅速和显著; 热带气旋对流不稳定的发展、 降水的演变以及表面向上的热通量和水汽通量的变化都与热带气旋强度的变化相似, 热带气旋的强度与其表面向上的热通量、 水汽通量之间存在着强正相关; 不同成员间初始场的差异导致其强度预报的差异, 但初始场的这些差异总体上要比观测误差小得多, 初始场的最大差异也都在观测误差的范围内; 导致热带气旋强度预报的不确定性的关键因子为初始场上表面和低层的湿度场以及温度场的不确定性, 尤其是不同成员间低层湿度场的差异, 这种差异不仅在于总体大小的差异, 还在于其分布的差异.

This is a preview of subscription content, log in to check access.

References

  1. Cangialosi, J. P., and J. L. Franklin, 2016: National hurricane center forecast verification report: 2015 hurricane season. NOAA Rep., 69 pp.

  2. DeMaria, M., C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is tropical cyclone intensity guidance improving? Bull Amer. Meteorol. Soc., 95, 95–387, https://doi.org/10.1175/BAMS-D-12-00240.1.

  3. Duan, Y. H., L. S. Chen, Y. L. Xu, and C. H. Qian, 2012: The status and suggestions of the improvement in the typhoon observation, forecasting and warning systems in China. Engineering Science, 14(9), 4–9. (in Chinese)

  4. Emanuel, K., and F. Q. Zhang, 2016: On the predictability and error sources of tropical cyclone intensity forecasts. J. Atmos. Sci., 73, 73–3739, https://doi.org/10.1175/JAS-D-16-0100.1.

  5. Emanuel, K., and F. Q. Zhang, 2017: The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. J. Atmos. Sci., 74, 74–2315, https://doi.org/10.1175/JAS-D-17-0008.1.

  6. Gopalakrishnan, S. G., F. Marks Jr., J. A. Zhang, X. J. Zhang, J. W. Bao, and V. Tallapragada, 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 70–524, https://doi.org/10.1175/JAS-D-11-0340.1.

  7. Meng, Z. Y., and F. Q. Zhang, 2007: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part II: Imperfect model experiments. Mon. Wea. Rev., 135, 135–1403, https://doi.org/10.1175/MWR3352.1.

  8. Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an Ensemble Kalman Filter. Mon. Wea. Rev., 130, 130–2791, https://doi.org/10.1175/1520-0493(2002)130<2791:ESBAME>2.0.CO;2.

  9. Munsell, E. B., F. Q. Zhang, and D. P. Stern, 2013: Predictability and dynamics of a nonintensifying tropical storm: Erika (2009). J. Atmos. Sci., 70, 70–2505, https://doi.org/10.1175/JAS-D-12-0243.1.

  10. Munsell, E. B., J. A. Sippel, S. A. Braun, Y. H. Weng, and F. Q. Zhang, 2015: Dynamics and predictability of Hurricane Nadine (2012) evaluated through convection-permitting ensemble analysis and forecasts. Mon. Wea. Rev., 143, 143–4514, https://doi.org/10.1175/MWR-D-14-00358.1.

  11. Munsell, E. B., F. Q. Zhang, J. A. Sippel, S. A. Braun, and Y. H. Weng, 2017: Dynamics and predictability of the intensification of Hurricane Edouard (2014). J. Atmos. Sci., 74, 74–573, https://doi.org/10.1175/JAS-D-16-0018.1.

  12. Poterjoy, J., and F. Q. Zhang, 2014: Predictability and genesis of hurricane Karl (2010) examined through the EnKF assimilation of field observations collected during PREDICT. J. Atmos. Sci., 71, 71–1260, https://doi.org/10.1175/JAS-D-13-0291.1.

  13. Qian, C. H., Y. H. Duan, S. H. Ma, and Y. L. Xu, 2012: The current status and future development of China operational typhoon forecasting and its key technologies. Advances in Meteorological Science and Technology, 2(5), 36–43. (in Chinese)

  14. Sippel, J. A., and F. Q. Zhang, 2008: A probabilistic analysis of the dynamics and predictability of tropical cyclogenesis. J. Atmos. Sci., 65, 65–3440, https://doi.org/10.1175/2008JAS2597.1.

  15. Sippel, J. A., and F. Q. Zhang, 2010: Factors affecting the predictability of Hurricane Humberto (2007). J. Atmos. Sci., 67, 67–1759, https://doi.org/10.1175/2010JAS3172.1.

  16. Tripoli, G. J., 1992: An explicit three-dimensional nonhydrostatic numerical simulation of a tropical cyclone. Meteorol. Atmos. Phys., 49, 49–229, https://doi.org/10.1007/BF01025409.

  17. van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical-cyclone intensification and predictability in three dimensions. Quart. J. Roy. Meteorol. Soc., 134, 134–563, https://doi.org/10.1002/qj.235.

  18. Wang, C. X., and Z. H. Zeng, 2018a: Influence of model horizontal resolution on the intensity and structure of Rammasun. Journal of Tropical Meteorology, 24, 24–15, https://doi.org/10.16555/j.1006-8775.2018.01.002.

  19. Wang, C. X., and Z. H. Zeng, 2018b: The effect of model horizontal resolution on the precipitation of Rammasun. Journal of Tropical Meteorology, 24, 24–263, https://doi.org/10.16555/j.1006-8775.2018.03.001.

  20. Ying, M., W. Zhang, H. Yu, X. Q. Lu, J. X. Feng, Y. X. Fan, Y. T. Zhu, and D. Q. Chen, 2014: An overview of the China Meteorological Administration tropical cyclone database. J. Atmos. Oceanic Technol., 31, 31–287, https://doi.org/10.1175/JTECH-D-12-00119.1.

  21. Zhang, F. Q., and J. A. Sippel, 2009: Effects of moist convection on hurricane predictability. J. Atmos. Sci., 66, 66–1944, https://doi.org/10.1175/2009JAS2824.1.

  22. Zhang, F. Q., and D. D. Tao, 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 70–975, https://doi.org/10.1175/JAS-D-12-0133.1.

  23. Zhang, F. Q., Z. Y. Meng, and A. Aksoy, 2006: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments. Mon. Wea. Rev., 134, 134–722, https://doi.org/10.1175/MWR3101.1.

Download references

Acknowledgements

This study received financial support from the National Natural Science Foundation of China (Grant Nos. 41575108 and 41475082).

Author information

Correspondence to Ming Ying.

Additional information

Article Highlights

• Uncertainty in initial conditions leads to TC forecast uncertainty, particularly for TC intensity.

• Initial condition errors smaller than analysis errors can result in large errors in TC intensity forecasts after 48 h.

• Initial humidity errors, and to a lesser extent initial temperature errors, are the key factors leading to errors in TC intensity forecasts.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zeng, Z. & Ying, M. Uncertainty in Tropical Cyclone Intensity Predictions due to Uncertainty in Initial Conditions. Adv. Atmos. Sci. 37, 278–290 (2020). https://doi.org/10.1007/s00376-019-9126-6

Download citation

Key words

  • uncertainty
  • tropical cyclone
  • intensity
  • initial conditions

关键词

  • 不确定性
  • 热带气旋
  • 强度
  • 初始条件