Advertisement

A 38-Year Climatology of Explosive Cyclones over the Northern Hemisphere

Abstract

Explosive cyclones (ECs) over two basins in the Northern Hemisphere (20°–90°N) from January 1979 to December 2016 are investigated using ERA-Interim and Optimum Interpolation Sea Surface Temperature (OISST) data. The classical definition of an EC is modified considering not only the rapid drop of the central sea level pressure of the cyclone, but also the strong wind speed at the height of 10 m in which maximum wind speeds greater than 17.2 m s−1 are included. According to the locations of the northern Atlantic and northern Pacific, the whole Northern Hemisphere is divided into the “A region” (20°–90°N, 90°W–90°E) and “P region” (20°–90°N, 90°E–90°W). Over both the A and P regions, the climatological features of ECs, such as their spatial distribution, intensity, seasonal variation, interannual variation, and moving tracks, are documented.

摘 要

本文利用 ERA-Interim 和 OISST 资料, 对 1979 年 1 月至 2016 年 12 月北半球 (20°–90°N) 两个大洋上的爆发性气旋进行了研究, 修正了经典的爆发性气旋定义, 不仅考虑气旋中心海表面气压的快速下降, 而且还考虑了海表面 10 m 高度上的最大风速, 即爆发性气旋的最大风速应大于 17.2 m s-1. 根据北大西洋和北太平洋的地理位置, 整个北半球可分为大西洋海盆 “A 区” (20°–90°N, 90°W–90°E) 和太平洋海盆 “P 区” (20°–90°N, 90°E–90°W) 两个区域. 对 A 区和 P 区的爆发性气旋的气候特征, 如空间分布、 强度、 季节变化、 年际变化和移动路径等特征进行了分析.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. Allen, J. T., A. B. Pezza, and M. T. Black, 2010: Explosive cyclogenesis: A global climatology comparing multiple reanalyses. J. Climate, 23, 6468–6484, https://doi.org/10.1175/2010JCLI3437.1.

  2. Anthes, R. A., and D. Keyser, 1979: Tests of a fine-mesh model over Europe and the United States. Mon. Wea. Rev., 107, 963–984, https://doi.org/10.1175/1520-0493(1979)107<0963:TOAFMM>2.0.CO;2.

  3. Anthes, R. A., Y. H. Kuo, and J. R. Gyakum, 1983: Numerical simulations of a case of explosive marine cyclogenesis. Mon. Wea. Rev., 111, 1174–1188, https://doi.org/10.1175/1520-0493(1983)111<1174:NSOACO>2.0.CO;2.

  4. Bergeron, T., 1954: Review of modern meteorology-12: The problem of tropical hurricanes. Quart. J. Roy. Meteorol. Soc., 80, 131–164, https://doi.org/10.1002/qj.49708034402.

  5. Binder, H., M. Boettcher, H. Joos, and H. Wernli, 2016: The role of warm conveyor belts for the intensification of extratropical cyclones in Northern Hemisphere Winter. J. Atmos. Sci., 73, 3997–4020, https://doi.org/10.1175/JAS-D-15-0302.1.

  6. Black, M. T., and A. B. Pezza, 2013: A universal, broad-environment energy conversion signature of explosive cyclones. Geophys. Res. Lett., 40, 452–457, https://doi.org/10.1002/grl.50114.

  7. Bosart, L. F., 1981: The presidents’ day snowstorm of 18–19 February 1979: A subsynoptic-scale event. Mon. Wea. Rev., 109, 1542–1566, https://doi.org/10.1175/1520-0493(1981)109<1542:TPDSOF>2.0.CO;2.

  8. Bosart, L. F., and S. C. Lin, 1984: A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon. Wea. Rev., 112, 2148–2177, https://doi.org/10.1175/1520-0493(1984)112<2148:ADAOTP>2.0.CO;2.

  9. Browning, K. A., and B. W. Golding, 1995: Mesoscale aspects of a dry intrusion within a vigorous cyclone. Quart. J. Roy. Meteorol. Soc., 121, 463–493, https://doi.org/10.1002/qj.49712152302.

  10. Bullock, T. A., and J. R. Gyakum, 1993: A diagnostic study of cyclogenesis in the Western North Pacific Ocean. Mon. Wea. Rev., 121, 65–75, https://doi.org/10.1175/1520-0493(1993)121<0065:ADSOCI>2.0.CO;2.

  11. Chen, S. J., and L. Dell’osso, 1987: A numerical case study of East Asian coastal cyclogenesis. Mon. Wea. Rev., 115, 477–487, https://doi.org/10.1175/1520-0493(1987)115<0477:ANCSOE>2.0.CO;2.

  12. Chen, S. J., Y. H. Kuo, P. Z. Zhang, and Q. F. Bai, 1992: Climatology of explosive cyclones off the East Asian coast. Mon. Wea. Rev., 120, 3029–3035, https://doi.org/10.1175/1520-0493(1992)120<3029:COECOT>2.0.CO;2.

  13. Chen, T., C. B. Chang, and D. J. Perkey, 1983: Numerical study of an AMTEX’75 oceanic cyclone. Mon. Wea. Rev., 111, 1818–1829, https://doi.org/10.1175/1520-0493(1983)111<1818:NSOAAO>2.0.CO;2.

  14. Cordeira, J. M., and L. F. Bosart, 2011: Cyclone interactions and evolutions during the “Perfect Storms” of Late October and Early November 1991. Mon. Wea. Rev., 139, 1683–1707, https://doi.org/10.1175/2010MWR3537.1.

  15. Dal Piva, E., M. A. Gan, and M. C. de Lima Moscati, 2011: The role of latent and sensible heat fluxes in an explosive cyclogenesis over the South American East Coast. J. Meteorol. Soc. Japan, 89, 637–663, https://doi.org/10.2151/jmsj.2011-604.

  16. Fink, A. H., S. Pohle, J. G. Pinto, and P. Knippertz, 2012: Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys. Res. Lett., 39, L07803, https://doi.org/10.1029/2012GL051025.

  17. Gyakum, J. R., 1983a: On the evolution of the QE-II storm. I: Synoptic aspects. Mon. Wea. Rev., 111, 1137–1155, https://doi.org/10.1175/1520-0493(1983)111<1137:OTEOTI>2.0.CO;2.

  18. Gyakum, J. R., 1983b: On the evolution of the QE-II storm. II: Dynamic and thermodynamic structure. Mon. Wea. Rev., 111, 1156–1173, https://doi.org/10.1175/11520-0493(1983)111<1156:OTEOTI>2.0.CO;2.

  19. Gyakum, J. R., 1991: Meteorological precursors to the explosive intensification of the QE II storm. Mon. Wea. Rev., 119, 1105–1131, https://doi.org/10.1175/1520-0493(1991)119<1105:MPTTEI>2.0.CO;2.

  20. Gyakum, J. R., J. R. Anderson, R. H. Grumm, and E. L. Gruner, 1989: North Pacific cold-season surface cyclone activity: 1975–1983. Mon. Wea. Rev., 117, 1141–1155, https://doi.org/10.1175/1520-0493(1989)117<1141:NPCSSC>2.0.CO;2.

  21. Hart, R. E., 2003: Acyclone phase space derived from thermal wind and thermal asymmetry. Mon. Wea. Rev., 131, 585–616, https://doi.org/10.1175/1520-0493(2003)131<0585:ACPSDF>2.0.CO;2.

  22. Hirata, H., R. Kawamura, M. Kato, and T. Shinoda, 2015: Influential role of moisture supply from the Kuroshio/Kuroshio extension in the rapid development of an extratropical cyclone. Mon. Wea. Rev., 143, 4126–4144, https://doi.org/10.1175/MWR-D-15-0016.1.

  23. Iwao, K., M. Inatsu, and M. Kimoto, 2012: Recent changes in explosively developing extratropical cyclones over the winter northwestern Pacific. J. Climate, 25, 7282–7296, https://doi.org/10.1175/JCLI-D-11-00373.1.

  24. Kelly, R. W. P., J. R. Gyakum, D. L. Zhang, and P. J. Roebber, 1994: A diagnostic study of the early phases of sixteen western North-Pacific Cyclones. J. Meteorol. Soc. Japan, 72, 515–530, https://doi.org/10.2151/jmsj1965.72.4_515.

  25. Konrad II, C. E., and S. J. Colucci, 1988: Synoptic climatology of 500 mb circulation changes during explosive cyclogenesis. Mon. Wea. Rev., 116, 1431–1443, https://doi.org/10.1175/1520-0493(1988)116<1431:SCOMCC>2.0.CO;2.

  26. Kouroutzoglou, J., H. A. Flocas, I. Simmonds, K. Keay, and M. Hatzaki, 2011: Assessing characteristics of Mediterranean explosive cyclones for different data resolution. Theor. Appl. Climatol., 105, 263–275, https://doi.org/10.1007/s00704-010-0390-8.

  27. Kristjánsson, J. E., S. Thorsteinsson, and B. Røsting, 2009: Phase-locking of a rapidly developing extratropical cyclone by Greenland’s orography. Quart. J. Roy. Meteorol. Soc., 135, 1986–1998, https://doi.org/10.1002/qj.497.

  28. Kuo, Y. H., S. Low-Nam, and R. J. Reed, 1991: Effects of surface energy fluxes during the early development and rapid intensification stages of seven explosive cyclones in the western Atlantic. Mon. Wea. Rev., 119, 457–476, https://doi.org/10.1175/1520-0493(1991)119<0457:EOSEFD>2.0.CO;2.

  29. Lackmann, G. M., L. F. Bosart, and D. Keyser, 1996: Planetary-and synoptic-scale characteristics of explosive wintertime cyclogenesis over the western North Atlantic Ocean. Mon. Wea. Rev., 124, 2672–2702, https://doi.org/10.1175/1520-0493(1996)124<2672:PASSCO>2.0.CO;2.

  30. Liou, C. S., and R. L. Elsberry, 1987: Heat budgets of analyses and forecasts of an explosively deepening maritime cyclone. Mon. Wea. Rev., 115, 1809–1824, https://doi.org/10.1175/1520-0493(1987)115<1809:HBOAAF>2.0.CO;2.

  31. Lupo, A. R., P. J. Smith, and P. Zwack, 1992: A diagnosis of the explosive development of two extratropical cyclones. Mon. Wea. Rev., 120, 1490–1523, https://doi.org/10.1175/1520-0493(1992)120<1490:ADOTED>2.0.CO;2.

  32. Nesterov, E. S., 2010: Explosive cyclogenesis in the northeastern Part of the Atlantic Ocean. Russian Meteorology and Hydrology, 35, 680–686, https://doi.org/10.3103/S1068373910100055.

  33. Nuss, W. A., and R. A. Anthes, 1987: A numerical investigation of low-level processes in Rapid cyclogenesis. Mon. Wea. Rev., 115, 2728–2743, https://doi.org/10.1175/1520-0493(1987)115<2728:ANIOLL>2.0.CO;2.

  34. Petterssen, S., and S. J. Smebye, 1971: On the development of extratropical cyclones. Quart. J. Roy. Meteorol. Soc., 97, 457–482, https://doi.org/10.1002/qj.49709741407.

  35. Rausch, R. L. M., and P. J. Smith, 1996: A diagnosis of a model-simulated explosively developing extratropical cyclone. Mon. Wea. Rev., 124, 875–904, https://doi.org/10.1175/1520-0493(1996)124<0875:ADOAMS>2.0.CO;2.

  36. Reed, R. J., and M. D. Albright, 1986: A case study of explosive cyclogenesis in the Eastern Pacific. Mon. Wea. Rev., 114, 2297–2319, https://doi.org/10.1175/11520-0493(1986)114<2297:ACSOEC>2.0.CO;2.

  37. Rice, R. B., 1979: Tracking a killer storm. Sail, 10, 106–107.

  38. Rivière, G., P. Arbogast, K. Maynard, and A. Joly, 2010: The essential ingredients leading to the explosive growth stage of the European wind storm Lothar of Christmas 1999. Quart. J. Roy. Meteorol. Soc., 136, 638–652, https://doi.org/10.1002/qj.585.

  39. Roebber, P. J., 1984: Statistical analysis and updated climatology of explosive cyclones. Mon. Wea. Rev., 112, 1577–1589, https://doi.org/10.1175/1520-0493(1984)112<1577:SAAUCO>2.0.CO;2.

  40. Rogers, E., and L. F. Bosart, 1991: A diagnostic study of two intense oceanic cyclones. Mon. Wea. Rev., 119, 965–996, https://doi.org/10.1175/1520-0493(1991)119<0965:ADSOTI>2.0.CO;2.

  41. Ruscher, P. H., and T. P. Condo, 1996: Development of a rapidly deepening extratropical cyclone over land. Part I: Kinematic aspects. Mon. Wea. Rev., 124, 1609–1632, https://doi.org/10.1175/1520-0493(1996)124<1609:DOARDE>2.0.CO;2.

  42. Sanders, F., and J. R. Gyakum, 1980: Synoptic-dynamic climatology of the “Bomb”. Mon. Wea. Rev., 108, 1589–1606, https://doi.org/10.1175/1520-0493(1980)108<1589:SDCOT>2.0.CO;2.

  43. Sanders, F., 1986: Explosive cyclogenesis in the West-Central North Atlantic Ocean, 1981–84. Part I: Composite structure and mean behavior. Mon. Wea. Rev., 114, 1781–1794, https://doi.org/10.1175/1520-0493(1986)114<1781:ECIT-WC>2.0.CO;2.

  44. Strahl, J. L., and P. J. Smith, 2001: A diagnostic study of an explosively developing extratropical cyclone and an associated 500-hPa trough merger. Mon. Wea. Rev., 129, 2310–2328, https://doi.org/10.1175/1520-0493(2001)129<2310:AD-SOAE>2.0.CO;2.

  45. Uccellini, L. W., 1986: The possible influence of upstream upper-level baroclinic processes on the development of the QE II storm. Mon. Wea. Rev., 114, 1019–1027, https://doi.org/10.1175/1520-0493(1986)114<1019:TPIOUU>2.0.CO;2.

  46. Uccellini, L. W., and D. R. Johnson, 1979: The coupling of upper and lower tropospheric jet streaks and implications for the development of severe convective storms. Mon. Wea. Rev., 107, 682–703, https://doi.org/10.1175/1520-0493(1979)107<0682:TCOUAL>2.0.CO;2.

  47. Uccellini, L. W., P. J. Kocin, R. A. Petersen, C. H. Wash, and K. F. Brill, 1984: The Presidents’ Day cyclone of 18–19 February 1979: Synoptic overview and analysis of the subtropical jet streak influencing the pre-cyclogenetic period. Mon. Wea. Rev., 112, 31–55, https://doi.org/10.1175/11520-0493(1984)112<0031:TPDCOF>2.0.CO;2.

  48. Uccellini, L. W., D. Keyser, K. F. Brill, and C. H. Wash, 1985: The Presidents’ Day cyclone of 18–19 February 1979: Influence of upstream trough amplification and associated tropopause folding on rapid cyclogenesis. Mon. Wea. Rev., 113, 962–988, https://doi.org/10.1175/1520-0493(1985)113<0962:TPDCOF>2.0.CO;2.

  49. Wang, C. C., and J. C. Rogers, 2001: A composite study of explosive cyclogenesis in different sectors of the North Atlantic. Part I: Cyclone structure and evolution. Mon. Wea. Rev., 129, 1481–1499, https://doi.org/10.1175/1520-0493(2001)129<1481:ACSOEC>2.0.CO;2.

  50. Whitaker, J. S., L. W. Uccellini, and K. F. Brill, 1988: A modelbased diagnostic study of the rapid development phase of the Presidents’s Day cyclone. Mon. Wea. Rev., 116, 2337–2365, https://doi.org/10.1175/1520-0493(1988)116<2337:AMBDSO>2.0.CO;2.

  51. Yoshida, A., and Y. Asuma, 2004: Structures and environment of explosively developing extratropical cyclones in the Northwestern pacific region. Mon. Wea. Rev., 132, 1121–1142, https://doi.org/10.1175/1520-0493(2004)132<1121:SAEOED>2.0.CO;2.

  52. Zehnder, J. A., and D. Keyser, 1991: The influence of interior gradients of potential vorticity on rapid cyclogenesis. Tellus A: Dynamic Meteorology and Oceanography, 43, 198–212, https://doi.org/10.3402/tellusa.v43i3.11927.

  53. Zhang, S. Q., G. Fu, C. G. Lu, and J. W. Liu, 2017: Characteristics of explosive cyclones over the Northern Pacific. J. Appl. Meteorol. Climatol., 56, 3187–3210, https://doi.org/10.1175/JAMC-D-16-0330.1.

Download references

Acknowledgements

All authors express their thanks to the National Natural Science Foundation of China for financial support (Grant Nos. 41775042 and 41275049). Special thanks are given to the ECMWF for providing the ERA-Interim data, and to NOAA for providing the OISST data. Yawen SUN expressed her thanks to Dr. Linhao ZHONG, Dr. Shuqin ZHANG, Mr. Lijia CHEN, and Mr. Kan XU for their kind help.

Author information

Correspondence to Gang Fu.

Additional information

Article Highlights

• The definition of an explosive cyclone is modified considering both the rapid drop of central sea level pressure and the strong wind speed.

• The entire Northern Hemisphere is divided into the “A region” (20°–90°N, 90°W–90°E) and “P region” (20°–90°N, 90°E–90°W).

• Over both the A and P regions, the climatology of ECs, such as their spatial distribution, intensity, and seasonal and interannual variations, are documented.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fu, G., Sun, Y., Sun, J. et al. A 38-Year Climatology of Explosive Cyclones over the Northern Hemisphere. Adv. Atmos. Sci. 37, 143–159 (2020). https://doi.org/10.1007/s00376-019-9106-x

Download citation

Key words

  • explosive cyclone
  • Atlantic basin
  • Pacific basin
  • Northern Hemisphere
  • annual climatology
  • seasonal climatology
  • spatial distribution
  • moving track

关键词

  • 爆发性气旋
  • 大西洋海盆
  • 太平洋海盆
  • 北半球
  • 季节变化
  • 年际变化
  • 空间分布
  • 移动路径