Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 12, pp 1355–1370 | Cite as

Observed Trends in Extreme Temperature over the Klang Valley, Malaysia

  • Ahmad Norazhar Mohd Yatim
  • Mohd Talib LatifEmail author
  • Fatimah Ahamad
  • Md Firoz Khan
  • Mohd Shahrul Mohd Nadzir
  • Liew Juneng
Original Paper

Abstract

This study investigates the recent extreme temperature trends across 19 stations in the Klang Valley, Malaysia, over the period 2006–16. Fourteen extreme index trends were analyzed using the Mann-Kendall non-parametric test, with Sen’s slope as a magnitude estimator. Generally, the annual daily mean temperature, daily mean maximum temperature, and daily mean minimum temperature in the Klang Valley increased significantly, by 0.07°C yr−1, 0.07°C yr−1 and 0.08°C yr−1, respectively. For the warm temperature indices, the results indicated a significant upward trend for the annual maximum of maximum temperature, by 0.09°C yr−1, and the annual maximum of minimum temperature, by 0.11°C yr−1. The results for the total number of warm days and warm nights showed significant increasing trends of 5.02 d yr−1 and 6.92 d yr−1, respectively. For the cold temperature indices, there were upward trends for the annual minimum of maximum temperature, by 0.09°C yr−1, and the annual minimum of minimum temperature, by 0.03°C yr−1, concurrent with the decreases in the total number cold days (TX10P), with −3.80 d yr−1, and cold nights (TN10P), with −4.33 d yr−1. The 34°C and 37°C summer days results showed significant upward trends of 4.10 d yr−1 and 0.25 d yr−1, respectively. Overall, these findings showed upward warming trends in the Klang Valley, with the minimum temperature rate increasing more than that of the maximum temperature, especially in urban areas.

Key words

climate change extreme temperature trend urban environment tropical area 

摘 要

本研究利用马来西亚巴生河谷 19 个站的资料, 考察了该区域 2006–2016 年极端温度的变化趋势. 本研究所采用的趋势分析方法为 Mann-Kendall 非参数检验, 用 Sen 斜率估计趋势变化的强度, 以此分析了 14 个极端温度指标的变化趋势. 总体而言, 巴生河谷每年日平均温度、 日平均最高和最低温度都呈显著增加趋势, 增加率分别为 0.07°C yr−1、 0.07°C yr−1 和 0.08°C yr−1. 就高温指标而言, 每年最高温度和最低温度的最大值均呈上升趋势, 其增加率分别为 0.09°C yr−1 和 0.11°C yr−1; 每年高温白天和夜晚的总数也呈显著增加趋势, 其增加率分别为 5.02 d yr−1 和 6.92 d yr−1. 就低温指标而言, 每年最高温度和最低温度的最小值呈现上升趋势, 两者的增加率分别为 0.09°C yr−1 和 0.03°C yr−1, 与之伴随的是每年低温白天和夜晚总天数的减少 (两者的减少率分别为 −3.88 d yr−1 和 −4.33 d yr−1). 夏季温度高于 34°C 和 37°C 的天数分别呈 4.10 d yr−1 和 0.25 d yr−1 的增加趋势. 整体而言, 本研究结果表明巴生河谷温度增暖的趋势在城区更为显著, 其中最低温度的增加率高于最高温度.

关键字

气候变化 极端温度 趋势 城市环境 热带地区 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We thank Malaysian Meteorological Department and Department of Environment for supplying the temperature data. Special thanks to the Climate Research Branch of the Meteorological Service of Canada for developing and maintaining the RClimDex software for extreme climate index computations. Special thanks to Dr. Rose NORMAN for proofreading this manuscript. This research was partially supported by Newton-Ungku Omar Grant (XX-2017-002).

References

  1. Aguilar, E., and M. Prohom, 2006: Extra QC quality control software manual. [Available online at http://etccdi.pacificclimate.org/software.shtml]
  2. Aguilar, E., I. Auer, M. Brunet, T. C. Peterson, and J. Wieringa, 2003: Guidelines on climate metadata and homogenization. WMO-TD No. 1186, World Meteorological Organisation, Geneva, Switzerland, 52 pp.Google Scholar
  3. Alexander, L. V., and Coauthors, 2006: Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos., 111, D05109,  https://doi.org/10.1029/2005JD006290.Google Scholar
  4. Allen, S. M. J., W. A. Gough, and T. Mohsin, 2015: Changes in the frequency of extreme temperature records for Toronto, Ontario, Canada. Theor. Appl. Climatol., 119, 481–491,  https://doi.org/10.1007/s00704-014-1131-1.CrossRefGoogle Scholar
  5. Amirabadizadeh, M., Y. F. Huang, and T. S Lee, 2015: Recent trends in temperature and precipitation in the Langat River Basin, Malaysia. Adv. Meteorol., 2015, 579437.CrossRefGoogle Scholar
  6. Bulut, Y., S. Toy, M. A. Irmak, H. Yilmaz, and S. Yilmaz, 2008: Urban-rural climatic differences over a 2-year period in the City of Erzurum, Turkey. Atmósfera, 21(2), 121–133.Google Scholar
  7. Bunnell, T., 2002: Multimedia utopia? A geographical critique of high-tech development in Malaysia’s multimedia super corridor Antipode, 34(2), 265–295,  https://doi.org/10.1111/1467-8330.00238.CrossRefGoogle Scholar
  8. Burić, D., J. Luković, V. Ducić, J. Dragojlović, and M. Doderović, 2014: Recent trends in daily temperature extremes over southern Montenegro (1951-2010). Natural Hazards and Earth System Sciences, 14, 67–72,  https://doi.org/10.5194/nhess-14-67-2014.CrossRefGoogle Scholar
  9. Choi, G., and Coauthors, 2009: Changes in means and extreme events of temperature and precipitation in the Asia-Pacific Network region, 1955–2007. International Journal of Climatology, 29, 1906–1925,  https://doi.org/10.1002/joc.1979.CrossRefGoogle Scholar
  10. Della-Marta, P. M., M. R. Haylock, J. Luterbacher, and H. Wanner, 2007: Doubled length of western European summer heat waves since 1880. J. Geophys. Res. Atmos., 112, D15103,  https://doi.org/10.1029/2007JD008510.CrossRefGoogle Scholar
  11. Department of Statistics Malaysia, 2011: Population distribution and basic demographic characteristics, Population and Housing Census of Malaysia 2010. Department of Statistics, Putrajaya, Malaysia, 4 pp.Google Scholar
  12. Dimri, A. P., D. Kumar, A. Choudary, and P. Maharana, 2018: Future changes over the Himalayas: Maximum and minimum temperature. Global and Planetary Change, 162, 212–234,  https://doi.org/10.1016/j.gloplacha.2018.01.015.CrossRefGoogle Scholar
  13. Donat, M. G., and Coauthors, 2013: Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos., 118, 2098–2118,  https://doi.org/10.1002/jgrd.50150.CrossRefGoogle Scholar
  14. Easterling, D. R., G. A. Meehl, C. Parmesan, S. A. Changnon, T. R. Karl, and L. O. Mearns, 2000: Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074,  https://doi.org/10.1126/science.289.5487.2068.CrossRefGoogle Scholar
  15. Efthymiadis, D., C. M. Goodess, and P. D. Jones, 2011: Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Natural hazards and Earth System Sciences, 11, 2199–2214,  https://doi.org/10.5194/nhess-11-2199-2011.CrossRefGoogle Scholar
  16. Griffiths, G. M., and Coauthors, 2005: Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region. International Journal of Climatology, 25, 1301–1330,  https://doi.org/10.1002/joc.1194.CrossRefGoogle Scholar
  17. Hadi, A. S., S. Idrus, A. H. H. Shah, and A. F. Mohamed, 2011: Critical urbanisation transitions in Malaysia: The challenge of rising Bernam to Linggi basin extended mega urban region. Akademika, 81(2), 11–21.Google Scholar
  18. Hartmann, D. L., and Coauthors, 2013: Observations: Atmosphere and surface. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  19. Huang, L. M., J. L. Li, D. H. Zhao, and J. Y. Zhu, 2008: A fieldwork study on the diurnal changes of urban microclimate in four types of ground cover and urban heat island of Nanjing, China. Building and Environment, 43(1), 7–17,  https://doi.org/10.1016/j.buildenv.2006.11.025.CrossRefGoogle Scholar
  20. Intergovernmental Panel on Climate Change (IPCC), 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, T. F. Stocker et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp.Google Scholar
  21. Karl, T. R., and Coauthors, 1993: A new perspective on recent global warming: Asymmetric trends of daily maximum and minimum temperature. Bull. Amer. Meteor. Soc., 74, 1007–1024,  https://doi.org/10.1175/1520-0477(1993)074<1007:ANPORG>2.0.CO;2.CrossRefGoogle Scholar
  22. Keggenhoff, I., M. Elizbarashvili, A. Amiri-Farahani, and L. King, 2014: Trends in daily temperature and precipitation extremes over Georgia, 1971–2010. Weather and Climate Extremes, 4, 75–85,  https://doi.org/10.1016/j.wace.2014.05.001.CrossRefGoogle Scholar
  23. Klein Tank, A. M. G., and G. P. Können, 2003: Trends in indices of daily temperature and precipitation extremes in Europe, 1946–99. J. Climate, 16, 3665–3680,  https://doi.org/10.1175/1520-0442(2003)016<3665:TIIODT>2.0.CO;2.CrossRefGoogle Scholar
  24. Klein Tank, A. M. G., F. W. Zwiers, and X. B. Zhang, 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. World Meteorological Organization TD-1500, World Meteorological Organisation, Geneva, 52 pp.Google Scholar
  25. Kong, X. H., A. H. Wang, X. Q. Bi, and D. Wang, 2019: Assessment of temperature extremes in China using RegCM4 and WRF. Adv. Atmos. Sci., 36(4), 363–377,  https://doi.org/10.1007/s00376-018-8144-0.CrossRefGoogle Scholar
  26. Kostopoulou, E., and P. D. Jones, 2005: Assessment of climate extremes in the Eastern Mediterranean. Meteor. Atmos. Phys., 89, 69–85,  https://doi.org/10.1007/s00703-005-0122-2.CrossRefGoogle Scholar
  27. Kuglitsch, F. G., A. Toreti, E. Xoplaki, P. M. Della-Marta, C. S. Zerefos, M. Türkeş., and J. Luterbacher, 2010: Heat wave changes in the eastern Mediterranean since 1960. Geophys. Res. Lett., 77, L04802,  https://doi.org/10.1029/2009GL041841.Google Scholar
  28. Kuttler, W., A. B. Barlag, and F. Robmann, 1996: Study of the thermal structure of a town in a narrow valley. Atmos. Environ., 30(3), 365–378,  https://doi.org/10.1016/1352-2310(94)00271-1.CrossRefGoogle Scholar
  29. Lau, N. C., and M. J. Nath, 2012: A model study of heat waves over North America: Meteorological aspects and projections for the twenty-first century. J. Climate, 25, 4761–4784,  https://doi.org/10.1175/JCLI-D-11-00575.1.CrossRefGoogle Scholar
  30. Lu, G. Y., and D. W. Wong, 2008: An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34, 1044–1055,  https://doi.org/10.1016/j.cageo.2007.07.010.CrossRefGoogle Scholar
  31. Makaremi, N., E. Salleh, M. Z. Jaafar, and H. A. Ghaffarian-Hoseini, 2012: Thermal comfort conditions of shaded outdoor spaces in hot and humid climate of Malaysia. Building and Environment, 48, 7–14,  https://doi.org/10.1016/j.buildenv.2011.07.024.CrossRefGoogle Scholar
  32. Manton, M. J., and Coauthors, 2001: Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology, 21, 269–284,  https://doi.org/10.1002/joc.610.CrossRefGoogle Scholar
  33. Marjuki, G. van der Schrier, A. M. G. Klein Tank, E. J. M. van den Besselaar, Nurhayati, and Y. S. Swarinoto, 2016: Observed trends and variability in climate indices relevant for crop yields in Southeast Asia. J. Climate, 29, 2651–2669,  https://doi.org/10.1175/JCLI-D-14-00574.1.CrossRefGoogle Scholar
  34. Meteorological Malaysia (MetMalaysia), 2016: Annual Report of the Meteorological Malaysia. [Available online at http://www.met.gov.my/content/pdf/penerbitan/laporantahunan/laporantahunan2016.pdf]
  35. Morris, K. I., A. Chan, K. J. K. Morris, M. C. G. Ooi, M. Y. Oozeer, Y. A. Abakr, M. S. M. Nadzir, and I. Y. Mohammed, 2017: Urbanisation and urban climate of a tropical conurbation, Klang Valley, Malaysia. Urban Climate, 19, 54–71,  https://doi.org/10.1016/j.uclim.2016.12.002.CrossRefGoogle Scholar
  36. Perkins, S. E., and L. V. Alexander, 2013: On the measurement of heat waves. J. Climate, 26, 4500–4517,  https://doi.org/10.1175/JCLI-D-12-00383.1.CrossRefGoogle Scholar
  37. Rohini, P., M. Rajeevan, and A. K. Srivastava, 2016: On the variability and increasing trends of heat waves over India. Scientific Reports, 6, 26153,  https://doi.org/10.1038/srep26153.CrossRefGoogle Scholar
  38. Seng, Y. K., 2017: Climate Change and Weather Extremes — Challenges for Malaysia. [Available online at https://Lunu.edu/media/iigh.unu.edu/news/5210/1_Yap_ClimateChangeExtreme_Wx.pdf (accessed 15 February2018)]
  39. Stephenson, T. S., and Coauthors, 2014: Changes in extreme temperature and precipitation in the Caribbean region, 1961–2010. International Journal of Climatology, 34, 2957–2971,  https://doi.org/10.1002/joc.3889.Google Scholar
  40. Suhaila, J., and Z. Yusop, 2018: Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteor. Atmos. Phys., 130, 565–581,  https://doi.org/10.1007/s00703-017-0537-6.CrossRefGoogle Scholar
  41. Syafrina, A. H., M. D. Zalina, and L. Juneng, 2015: Historical trend of hourly extreme rainfall in peninsular Malaysia. Theor. Appl. Climatol., 120, 259–285,  https://doi.org/10.1007/s00704-014-1145-8.CrossRefGoogle Scholar
  42. Tan, M. L., N. Samat, N. W. Chan, A. J. Lee, and C. Li, 2019: Analysis of Precipitation and Temperature Extremes over the Muda River Basin, Malaysia. Water., 11, 283,  https://doi.org/10.3390/w11020283.CrossRefGoogle Scholar
  43. Tangang, F. T., L. Juneng, E. Salimun, K. M. Sei, L. J. Le, and H. Muhamad, 2012: Climate change and variability over Malaysia: Gaps in science and research information. Sains Malaysiana, 41(11), 1355–1366.Google Scholar
  44. Trewin, B., 2013: A daily homogenized temperature data set for Australia. International Journal of Climatology, 33, 1510–1529,  https://doi.org/10.1002/joc.3530. CrossRefGoogle Scholar
  45. Vincent, L. A., and Coauthors, 2005: Observed trends in indices of daily temperature extremes in South America 1960–2000. J. Climate, 88, 5011–5023,  https://doi.org/10.1175/JCLI3589.1.CrossRefGoogle Scholar
  46. Vincent, L. A., and Coauthors, 2011: Observed trends in indices of daily and extreme temperature and precipitation for the countries of the western Indian Ocean, 1961–2008. J. Geo-phys. Res. Atmos., 116, D10108,  https://doi.org/10.1029/2010JD015303.CrossRefGoogle Scholar
  47. Wang, X. L., 2003: Comments on “Detection of undocumented changepoints: A revision of the two-phase regression model”. J. Climate, 16, 3383–3385,  https://doi.org/10.1175/1520-0442(2003)016<3383:CODOUC>2.0.CO;2.CrossRefGoogle Scholar
  48. Wong, C. L., Z. Yusop, and T. Ismail, 2018: Trend of daily rainfall and temperature in Peninsular Malaysia based on gridded data set. International Journal of GEOMATE, 44, 65–72,  https://doi.org/10.21660/2018.44.3707.Google Scholar
  49. Yilmaz, S., S. Toy, M. A. Irmak, and H. Yilmaz, 2007: Determination of climatic differences in three different land uses in the city of Erzurum, Turkey. Building and Environment, 42, 1604–1612,  https://doi.org/10.1016/j.buildenv.2006.01.017.CrossRefGoogle Scholar
  50. You, Q. L., S. C. Kang, E. Aguilar, and Y. P. Yan, 2008: Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. Atmos., 113, D07101,  https://doi.org/10.1029/2007JD009389.CrossRefGoogle Scholar
  51. Zhang, X. B., and F. Yang, 2004: RClimDex (1.0) user manual. Climate Research Division, Atmospheric Science and Technology Directorate, Science and Technology Branch, Environment Canada, Ontario, Canada, 28 pp. [Available online at http://etccdi.pacificclimate.org/software.shtml]Google Scholar
  52. Zhang, X. B., and Coauthors, 2005: Trends in Middle East climate extreme indices from 1950 to 2003. J. Geophys. Res. Atmos., 110, D22104,  https://doi.org/10.1029/2005JD006181.CrossRefGoogle Scholar
  53. Zhang, X. B., L. Alexander, G. C. Hegerl, P. Jones, A. Klein Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Climate Change, 2(6), 851–870,  https://doi.org/10.1002/wcc.147.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ahmad Norazhar Mohd Yatim
    • 1
    • 2
  • Mohd Talib Latif
    • 3
    Email author
  • Fatimah Ahamad
    • 4
  • Md Firoz Khan
    • 5
  • Mohd Shahrul Mohd Nadzir
    • 3
    • 4
  • Liew Juneng
    • 3
  1. 1.Space Science Centre, Institute of Climate ChangeUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Faculty of Science and Natural ResourcesUniversiti Malaysia SabahKota KinabaluMalaysia
  3. 3.School of Environmental and Natural Resource Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  4. 4.Centre for Tropical Climate Change System, Institute of Climate ChangeUniversiti Kebangsaan MalaysiaBangiMalaysia
  5. 5.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations