Advertisement

Advances in Atmospheric Sciences

, Volume 37, Issue 2, pp 160–172 | Cite as

The Linkage between Two Types of El Niño Events and Summer Streamflow over the Yellow and Yangtze River Basins

  • Dan Wang
  • Aihui WangEmail author
  • Lianlian Xu
  • Xianghui Kong
Original Paper
  • 7 Downloads

Abstract

It is generally agreed that El Niño can be classified into East Pacific (EP) and Central Pacific (CP) types. Nevertheless, little is known about the relationship between these two types of El Niño and land surface climate elements. This study investigates the linkage between EP/CP El Niño and summer streamflow over the Yellow and Yangtze River basins and their possible mechanisms. Over the Yellow River basin, the anomalous streamflow always manifests as positive (negative) in EP (CP) years, with a correlation coefficient of 0.39 (−0.37); while over the Yangtze River basin, the anomalous streamflow shows as positive in both EP and CP years, with correlation coefficients of 0.72 and 0.48, respectively. Analyses of the surface hydrological cycle indicate that the streamflow is more influenced by local evapotranspiration (ET) than precipitation over the Yellow River basin, while it is dominantly affected by precipitation over the Yangtze River basin. The different features over these two river basins can be explained by the anomalous atmospheric circulation, which is cyclonic (anticyclonic) north (south) of 30°N over East Asia. EP years are dominated by two anticyclones, which bring strong water vapor convergence and induce more precipitation but less ET, and subsequently increase streamflow and flooding risks. In CP years, especially over the Yellow River basin, two cyclones dominate and lead to water vapor divergence and reduce moisture arriving. Meanwhile, the ET enhances mainly due to local high surface air temperature, which further evaporates water from the soil. As a result, the streamflow decreases, which will then increase the drought risk.

Key words

summer streamflow EP El Niño CP El Niño Yellow River basin Yangtze River basin 

摘 要

本文研究分析了 EP/CP El Niño 对长江、 黄河流域的夏季径流的影响及其可能机制. 在黄河流域地区, 夏季径流的异常值在 EP (CP) 年表现为正 (负) 值, 相关系数为 0.39 (−0.37); 长江流域夏季径流的异常值在 EP 和 CP 年中均呈正值, 相关系数分别为 0.72 和 0.48. 分析表明, 在黄河流域地区, 径流量受到蒸发的影响大于降水影响, 而长江流域地区主要受降水影响. 这两片流域不同的陆表水文循环特征可以从东亚上空 30 °N 以北 (南) 的气旋 (反气旋) 的异常环流变化来解释. EP 年间, 东亚上空 30°N 以南的反气旋增强且出现两个反气旋中心, 使得该地区有强烈的水汽辐合, 导致降水增加、 蒸散发减少, 进而增加了径流量、 增大了洪涝灾害风险. CP 年间, 30 °N 以北的气旋增强且出现两个气旋中心, 导致东亚上空水汽辐散、 水汽输送减弱, 降水减少, 同时蒸散发增强, 尤其是在黄河流域, 这进一步减少了局地水汽, 使该流域的径流量减少、 干旱灾害风险增大.

关键词

夏季径流 EP El Niño CP El Niño 黄河流域 长江流域 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Key Project of the Ministry of Science and Technology of China (Grant No. 2016YFA0602401) and the National Natural Science Foundation of China (Grant No. 41875106). The authors would like to acknowledge the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences, for providing the China River Valley datasets, which are available for free at their website (http://www.resdc.cn). Other datasets used in this study have been acknowledged in the paper.

Supplementary material

376_2019_9049_MOESM1_ESM.pdf (2.2 mb)
The Linkage between Two Types of El Niño Events and Summer Streamflow over the Yellow and Yangtze River Basins

References

  1. Ashok, K., S. K. Behera, S. A. Rao, H. Y. Weng, and T. Yamagata, 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112, C11007,  https://doi.org/10.1029/2006jc003798.CrossRefGoogle Scholar
  2. Banholzer, S., and S. Donner, 2014: The influence of different El Niño types on global average temperature. Geophys. Res. Lett., 41, 2093–2099,  https://doi.org/10.1002/2014gl059520.CrossRefGoogle Scholar
  3. Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the Western United States. J. Climate, 12, 2881–2893,  https://doi.org/10.1175/1520-4422(1999)0122881:EAHEIT>2.0.CO;2.CrossRefGoogle Scholar
  4. Cong, Z. T., D. W. Yang, B. Gao, H. B. Yang, and H. P. Hu, 2009: Hydrological trend analysis in the Yellow River basin using a distributed hydrological model. Water Resour. Res., 45, W00A13,  https://doi.org/10.1029/2008wr006852.CrossRefGoogle Scholar
  5. Gardner, L. R., 2009: Assessing the effect of climate change on mean annual runoff. J. Hydrol., 379, 351–359,  https://doi.org/10.1016/j.jhydrol.2009.10.021.CrossRefGoogle Scholar
  6. Hu, X. M., S. Yang, and M. Cai, 2016: Contrasting the eastern Pacific El Niño and the central Pacific El Niño: Process-based feedback attribution. Climate Dyn., 47, 2413–2424,  https://doi.org/10.1007/s00382-015-2971-9.CrossRefGoogle Scholar
  7. Huang, B. Y., and Coauthors, 2015: Extended Reconstructed Sea Surface Temperature Version 4(ERSST.v4). Part I: Upgrades and intercomparisons. J. Climate, 28, 911–930,  https://doi.org/10.1175/jcli-d-14-00006.1.CrossRefGoogle Scholar
  8. Huang, S. Z., Q. Huang, J. X. Chang, and G. Y. Leng, 2016: Linkages between hydrological drought, climate indices and human activities: A case study in the Columbia River basin. International Journal of Climatology, 36, 280–290,  https://doi.org/10.1002/joc.4344.CrossRefGoogle Scholar
  9. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–472,  https://doi.org/10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2.CrossRefGoogle Scholar
  10. Kanamitsu, M., W. Ebisuzaki, J. Woollen, S. K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. Amer. Meteorol. Soc., 83, 1631–1644,  https://doi.org/10.1175/bams-83-11-1631.CrossRefGoogle Scholar
  11. Kug, J. S., F. F. Jin, and S. I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515,  https://doi.org/10.1175/2008jcli2624.1.CrossRefGoogle Scholar
  12. Li, L. F., W. H. Li, Q. H. Tang, P. F. Zhang, and Y. M. Liu, 2016: Warm season heavy rainfall events over the Huaihe River Valley and their linkage with wintertime thermal condition of the tropical oceans. Climate Dyn., 46, 71–82,  https://doi.org/10.1007/s00382-015-2569-2.CrossRefGoogle Scholar
  13. Li, Z. J., and X. B. Li, 2008: Impacts of precipitation changes and human activities on annual runoff of Chao River Basin during past 45 years. Scientia Geographica Sinica, 28, 809–813,  https://doi.org/10.3969/j.issn.1000-0690.2008.06.017. (in Chinese)Google Scholar
  14. Liang, Y. C., C. C. Chou, J. Y. Yu, and M. H. Lo, 2016: Mapping the locations of asymmetric and symmetric discharge responses in global rivers to the two types of El Niño. Environmental Research Letters, 11, 044012,  https://doi.org/10.1088/1748-9326/11/4/044012.CrossRefGoogle Scholar
  15. Liang, Y. C., M. H. Lo, and J. Y. Yu, 2014: Asymmetric responses of land hydroclimatology to two types of El Niño in the Mississippi River Basin. Geophys. Res. Lett., 41, 582–588,  https://doi.org/10.1002/2013gl058828.CrossRefGoogle Scholar
  16. Lin, Z. D., and R. Y. Lu, 2009: The ENSO’s effect on eastern China rainfall in the following early summer. Adv. Atmos. Sci., 26, 333–342,  https://doi.org/10.1007/s00376-009-0333-4.CrossRefGoogle Scholar
  17. Liu, M. L., H. Q. Tian, C. Q. Lu, X. F. Xu, G. S. Chen, and W. Ren, 2012: Effects of multiple environment stresses on evapotranspiration and runoff over eastern China. J. Hydrol., 426–427, 39–54,  https://doi.org/10.1016/j.jhydrol.2012.01.009.CrossRefGoogle Scholar
  18. Liu, Q., and B. S. Cui, 2011: Impacts of climate change/variability on the streamflow in the Yellow River Basin, China. Ecological Modelling, 222, 268–274,  https://doi.org/10.1016/j.ecolmodel.2009.11.022.CrossRefGoogle Scholar
  19. Mu, Q. Z., F. A. Heinsch, M. S. Zhao, and S. W. Running, 2007: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519–536,  https://doi.org/10.1016/j.rse.2007.04.015.CrossRefGoogle Scholar
  20. Mueller, B., and Coauthors, 2013: Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis. Hydrology and Earth System Sciences, 17, 3707–3720,  https://doi.org/10.5194/hess-17-3707-2013.CrossRefGoogle Scholar
  21. Neelin, J. D., D. S. Battisti, A. C. Hirst, F. F. Jin, Y. Wakata, T. Yamagata, and S. E. Zebiak, 1998: ENSO theory. J. Geophys. Res., 103, 14 261–14 290,  https://doi.org/10.1029/97jc03424.CrossRefGoogle Scholar
  22. Ouyang, R., W. Liu, G. Fu, C. Liu, L. Hu, and H. Wang, 2014: Linkages between ENSO/PDO signals and precipitation, streamflow in China during the last 100 years. Hydrology and Earth System Sciences, 18, 3651–3661,  https://doi.org/10.5194/hess-18-3651-2014.CrossRefGoogle Scholar
  23. Qian, J. H., A. W. Robertson, and V. Moron, 2013: Diurnal cycle in different weather regimes and rainfall variability over Borneo associated with ENSO. J. Climate, 26, 1772–1790,  https://doi.org/10.1175/jcli-d-12-00178.1.CrossRefGoogle Scholar
  24. Ren, H. L., and F. F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704,  https://doi.org/10.1029/2010gl046031.CrossRefGoogle Scholar
  25. Sun, S. L., and Coauthors, 2017: On the coupling between precipitation and potential evapotranspiration: Contributions to decadal drought anomalies in the Southwest China. Climate Dyn., 48, 3779–3797,  https://doi.org/10.1007/s00382-016-3302-5.CrossRefGoogle Scholar
  26. Tian, Q., M. Prange, and U. Merkel, 2016: Precipitation and temperature changes in the major Chinese river basins during 1957–2013 and links to sea surface temperature. J. Hydrol., 536, 208–221,  https://doi.org/10.1016/j.jhydrol.2016.02.048.CrossRefGoogle Scholar
  27. Trenberth, K. E., 1997: The definition of El Niño. Bull. Amer. Meteorol. Soc., 78, 2771–2778,  https://doi.org/10.1175/1520-0477(1997)078<2771:tdoeno>2.0.co;2.CrossRefGoogle Scholar
  28. Wang, A. H., and X. B. Zeng, 2011: Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China. J. Geophys. Res., 116, D02107,  https://doi.org/10.1029/2010jd014659.Google Scholar
  29. Wang, A. H., X. B. Zeng, and D. L. Guo, 2016: Estimates of global surface hydrology and heat fluxes from the Community Land Model (CLM4.5) with four atmospheric forcing datasets. J. Hydrol., 17, 2493–2510,  https://doi.org/10.1175/jhm-d-16-0041.1.Google Scholar
  30. Wang, B., R. G. Wu, and X. H. Fu, 2000: Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? J. Climate, 13, 1517–1536,  https://doi.org/10.1175/1520-4422(2000)013<1517:PEATHD>2.0.CO;2.CrossRefGoogle Scholar
  31. Wang, X., X. W. Jiang, S. Yang, and Y. Q. Li, 2013: Different impacts of the two types of El Niño on Asian summer monsoon onset. Environmental Research Letters, 8, 044053,  https://doi.org/10.1088/1748-9326/8/4/044053.CrossRefGoogle Scholar
  32. Weng, H. Y., S. K. Behera, and T. Yamagata, 2009: Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Climate Dyn., 32, 663–674,  https://doi.org/10.1007/s00382-008-0394-6.CrossRefGoogle Scholar
  33. Wu, H., M. Y. Huang, Q. H. Tang, D. B. Kirschbaum, and P. Ward, 2016: Hydrometeorological hazards: Monitoring, forecasting, risk assessment, and socioeconomic responses. Advances in Meteorology, 2016, 2367939,  https://doi.org/10.1155/2016/2367939.Google Scholar
  34. Wu, J., and X. J. Gao, 2013: A gridded daily observation dataset over China region and comparison with the other datasets. Chinese Journal of Geophysics, 56, 1102–1111. (in Chinese)Google Scholar
  35. Yeh, S. W., J. S. Kug, B. Dewitte, M. H. Kwon, B. P. Kirtman, and F. F. Jin, 2009: El Niño in a changing climate. Nature, 461, 511–514,  https://doi.org/10.1038/nature08316.CrossRefGoogle Scholar
  36. Yeh, S. W., J. S. Kug, and S. I. An, 2014: Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pacific Journal of Atmospheric Sciences, 50, 69–81,  https://doi.org/10.1007/s13143-014-0028-3.CrossRefGoogle Scholar
  37. Yuan, F. F., H. Yasuda, R. Berndtsson, C. Bertacchi Uvo, L. Zhang, Z. C. Hao, and X. P. Wang, 2016: Regional sea-surface temperatures explain spatial and temporal variation of summer precipitation in the source region of the Yellow River. Hydrological Sciences Journal, 61, 1383–1394,  https://doi.org/10.1080/02626667.2015.1035658.CrossRefGoogle Scholar
  38. Zhang, Q., C. Y. Xu, T. Jiang, and Y. J. Wu, 2007: Possible influence of ENSO on annual maximum streamflow of the Yangtze River, China. J. Hydrol., 333, 265–274,  https://doi.org/10.1016/j.jhydrol.2006.08.010.CrossRefGoogle Scholar
  39. Zhang, Q., V. P. Singh, P. Sun, X. Chen, Z. X. Zhang, and J. F. Li, 2011: Precipitation and streamflow changes in China: Changing patterns, causes and implications. J. Hydrol., 410, 204–216,  https://doi.org/10.1016/j.jhydrol.2011.09.017.CrossRefGoogle Scholar
  40. Zhou, T., and Coauthors, 2018: Riverbed hydrologic exchange dynamics in a large regulated river reach. Water Resour. Res., 54, 2715–2730,  https://doi.org/10.1002/2017wr020508.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  • Dan Wang
    • 1
    • 2
  • Aihui Wang
    • 1
    Email author
  • Lianlian Xu
    • 1
    • 2
  • Xianghui Kong
    • 1
  1. 1.Nansen-Zhu International Research Center, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations