Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 12, pp 1371–1380 | Cite as

On the Interrelation between Spring Bihemispheric Circulations at Middle and High Latitudes

  • Chuhan LuEmail author
  • Zhaoyong Guan
Original Paper
  • 7 Downloads

Abstract

Bihemispheric atmospheric interaction and teleconnection allow us to deepen our understanding of large-scale climate and weather variability. This study uses 1979–2017 spring NCEP reanalysis to show that there is interrelation between bihemispheric circulations at the extratropics. This is regarded as a significant negative correlation between the Antarctic and the Arctic regional surface air pressure anomalies, which is induced by interhemispheric oscillation (IHO) of the atmospheric mass. The spatial pattern of IHO is characterized by antiphase extratropical airmass anomalies and geopotential height anomalies from the troposphere to stratosphere between the Southern and Northern Hemisphere. IHO is closely related to stronger bihemispheric low-frequency signals such as Antarctic Oscillation and Arctic Oscillation, thereby demonstrating that IHO can be interpreted as a tie in linking these two dominant extratropical circulations of both hemispheres. IHO is associated with a strong meridional teleconnection in zonal winds from the middle-high troposphere to the lower stratosphere, with the wind anomalies in the form of alternate positive-negative wavy bands extending from the Antarctic to Arctic region, which act as a possible approach to interactions between the bihemispheric atmospheric mass. It is argued that IHO-related omega angular momentum anomalies led by the extratropical atmosphere cause the meridional teleconnection of relative angular momenta, thereby giving rise to the zonal wind anomalies. The modeling of GFDL and UKMO as components of the CMIP5 project have been verified, achieving the related IHO structure shown in the present paper.

Key words

bihemispheric interaction extratropical atmosphere interhemispheric oscillation 

摘 要

两半球大气相互作用以及遥相关联系有助于加深对大尺度气候及天气变率的认识. 本文利用 1979 至 2017 年春季 NCEP 再分析资料, 分析发现: 春季南北半球中高纬度间大气可以通过两半球大气质量涛动 (IHO) 产生相互联系, IHO 相关联的环流异常分布主要表现南北半球中高纬度之间大气质量以及自对流层至平流层的反相异常位势高度场分布特征. IHO 与南北两半球中高纬度显著的低频信号南极涛动 (AAO) 以及北极涛动 (AO) 均存在较好的相关关系, 进一步印证 IHO 对南北半球中高纬度环流相互联系起到纽带作用. IHO 与大范围的纬向平均纬向风异常联系密切, 其与对流层中高层及平流层低层的纬向风存在明显的经向遥相关分布, 风场异常的波状形正负交替可由南极一直延伸至北极区域, 是两半球大气相互作用的可能途径. 春季 IHO 与中高纬大气牵引角动量的异常分布联系, 并且引起相对角动量的经相遥相关联系, 从而引起纬向风场的异常变化. 利用 CMIP5 计划中 GFDL、 UKMO 模式结果, 亦验证得到相应的 IHO 结构特征.

关键词

中高纬度大气 南北涛动 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the Center of Atmospheric Data Service, Nanjing University of Information Science & Technology, under the Geoscience Department of the National Natural Science Foundation of China, and NOAACIRES Climate Diagnostics Center (http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml) for providing data. This work is supported jointly by the National Basic Research Program of China (Grant No. 2015CB953904) and the National Natural Science Foundation of China (Grant Nos. 41975073, 41575081 and 41741005).

References

  1. Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans. J. Climate, 15(16), 2205–2231,  https://doi.org/10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2.CrossRefGoogle Scholar
  2. Baldwin, M. P., 2001: Annular modes in global daily surface pressure. Geophys. Res. Lett., 28, 4115–4118,  https://doi.org/10.1029/2001GL013564.CrossRefGoogle Scholar
  3. Baldwin, M. P., and D. W. J. Thompson, 2009: A critical comparison of stratosphere-troposphere coupling indices. Quart. J. Roy. Meteor. Soc., 135, 1661–1672,  https://doi.org/10.1002/qj.479.CrossRefGoogle Scholar
  4. Blewitt, G., D. Lavallée, P. Clarke, and K. Nurutdinov, 2001: A new global mode of earth deformation: Seasonal cycle detected. Science, 294, 2342–2345,  https://doi.org/10.1126/science.1065328.CrossRefGoogle Scholar
  5. Carrera, M. L., and J. R. Gyakum, 2003: Significant events of inter-hemispheric atmospheric mass exchange: Composite structure and evolution. J. Climate, 16, 4061–4078,  https://doi.org/10.1175/1520-0442(2003)016<4061:SEOIAM>2.0.CO;2.CrossRefGoogle Scholar
  6. Chang, E. K. M., 1998: Poleward-propagating angular momentum perturbations induced by zonally symmetric heat sources in the tropics. J. Atmos. Sci., 55, 2229–2248,  https://doi.org/10.1175/1520-0469(1998)055<2229:PPAMPI>2.0.CO;2.CrossRefGoogle Scholar
  7. Chen, S. F., B. Yu, and W. Chen, 2014: An analysis on the physical process of the influence of AO on ENSO. Climate Dyn., 42, 973–989,  https://doi.org/10.1007/s00382-012-1654-z.CrossRefGoogle Scholar
  8. Chen, S. F., B. Yu, and W. Chen, 2015: An interdecadal change in the influence of the spring Arctic Oscillation on the subsequent ENSO around the early 1970s. Climate Dyn., 44, 1109–1126,  https://doi.org/10.1007/s00382-014-2152-2.CrossRefGoogle Scholar
  9. Chen, S. F., W. Chen, and B. Yu, 2017: The influence of boreal spring Arctic Oscillation on the subsequent winter ENSO in CMIP5 models. Climate Dyn., 48, 2949–2965,  https://doi.org/10.1007/s00382-016-3243-z.CrossRefGoogle Scholar
  10. Chen, S. F., R. G. Wu, and W. Chen, 2018: A strengthened impact of November Arctic oscillation on subsequent tropical Pacific sea surface temperature variation since the late-1970s. Climate Dyn., 51, 511–529,  https://doi.org/10.1007/s00382-017-3937-x.CrossRefGoogle Scholar
  11. Chen, T.-C., J.-M. Chen, S. Schubert, and L. L. Takacs, 1997: Seasonal variation of global surface pressure and water vapor. Tellus A: Dynamic Meteorology and Oceanography, 49, 613–621,  https://doi.org/10.3402/tellusa.v49i5.14825.CrossRefGoogle Scholar
  12. Christy, J. R., K. E. Trenberth, and J. R. Anderson, 1989: Large-scale redistributions of atmospheric mass. J. Climate, 2, 137–148,  https://doi.org/10.1175/1520-0442(1989)002<0137:LSROAM>2.0.CO;2.CrossRefGoogle Scholar
  13. Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic oscillation index. Geophys. Res. Lett., 26, 459–462,  https://doi.org/10.1029/1999GL900003.CrossRefGoogle Scholar
  14. Guan, Z. Y., and T. Yamagata, 2001: Interhemispheric oscillations in the surface air pressure field. Geophys. Res. Lett., 28, 263–266,  https://doi.org/10.1029/2000GL011563.CrossRefGoogle Scholar
  15. Guan, Z. Y., C. H. Lu, S. L. Mei, and J. Cong, 2010: Seasonality of interannual inter-hemispheric oscillations over the past five decades. Adv. Atmos. Sci., 27, 1043–1050,  https://doi.org/10.1007/s00376-009-9126-z.CrossRefGoogle Scholar
  16. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 71, 437–472,  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  17. Lu, C. H., and Z. Y. Guan, 2009: On the interannual variation in spring atmospheric inter-hemispheric oscillation linked to synchronous climate in China. Progress in Natural Science, 14, 1125–1131,  https://doi.org/10.1016/j.pnsc.2009.01.006.CrossRefGoogle Scholar
  18. Lu, C. H., Z. Y. Guan, S. L. Mei, and Y. J. Qin, 2008: The seasonal cycle of interhemispheric oscillations in mass field of the global atmosphere. Chinese Science Bulletin, 53(20), 3226–3234,  https://doi.org/10.1007/s11434-008-0316-3.Google Scholar
  19. Namias, J., 1963: Large-scale air-sea interactions over the North Pacific from summer 1962 through the subsequent winter. J. Geophys. Res., 88, 6171–6186,  https://doi.org/10.1029/JZ068i022p06171.CrossRefGoogle Scholar
  20. Nicholson, S. E., and D. Entekhabi, 1986: The quasi-periodic behavior of rainfall variability in Africa and its relationship to the southern oscillation. Arch. Met. Geoph. Biocl. Series A, 34, 311–348,  https://doi.org/10.1007/BF02257765.CrossRefGoogle Scholar
  21. Newell, R. E., D. G. Vincent, and J. W. Kidson, 1969: Interhemispheric mass exchange from meteorological and trace substance observations. Tellus, 21, 641–647,  https://doi.org/10.3402/tellusa.v21i5.10114.CrossRefGoogle Scholar
  22. Qin, Y. J., P. X. Wang, Z. Y. Guan, and Y. Yue, 2006: Comparison of the Hadley cells calculated from two reanalysis data sets. Chinese Science Bulletin, 51, 1741–1746,  https://doi.org/10.1007/s11434-006-2030-3.CrossRefGoogle Scholar
  23. Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 2960–2978,  https://doi.org/10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.CrossRefGoogle Scholar
  24. Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 55, 1297–1300,  https://doi.org/10.1029/98GL00950.CrossRefGoogle Scholar
  25. Thompson, D. W. J., and D. J. Lorenz, 2004: The signature of the annular modes in the tropical troposphere. J. Climate, 17, 4330–4342,  https://doi.org/10.1175/3193.1.CrossRefGoogle Scholar
  26. Trenberth, K. E., 1976: Spatial and temporal variations of the Southern Oscillation. Quart. J. Roy. Meteor. Soci., 102, 639–653,  https://doi.org/10.1002/qj.49710243310.CrossRefGoogle Scholar
  27. Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14 291–14 324,  https://doi.org/10.1029/97JC01444.CrossRefGoogle Scholar
  28. von Storch, J. S., 2000: Angular momenta of the Antarctic and the Arctic oscillations. J. Climate, 13, 681–685,  https://doi.org/10.1175/1520-0442(2000)013<0681:AMOTAA>2.0.CO;2.CrossRefGoogle Scholar
  29. Walker, G. T., 1924: Correlations in seasonal variations of weather IX. Mem. Ind. Meteor. Dept, 24, 275–332.Google Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education/Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations