Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 7, pp 753–765 | Cite as

Evaluation of the Forecast Performance for North Atlantic Oscillation Onset

  • Guokun Dai
  • Mu Mu
  • Zhina JiangEmail author
Original Paper
  • 5 Downloads

Abstract

By utilizing operational forecast products from TIGGE (The International Grand Global Ensemble) during 2006 to 2015, the forecasting performances of the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), Japan Meteorology Agency (JMA) and China Meteorological Administration (CMA) for the onset of North Atlantic Oscillation (NAO) events are assessed against daily NCEP–NCAR reanalysis data. Twenty-two positive NAO (NAO+) and nine negative NAO (NAO−) events are identified during this time period. For these NAO events, control forecasts, one member of the ensemble that utilizes the currently most proper estimate of the analysis field and the best description of the model physics, are able to predict their onsets three to five days in advance. Moreover, the failure proportion for the prediction of NAO− onset is higher than that for NAO+ onset, which indicates that NAO− onset is harder to forecast. Among these four operational centers, ECMWF has performs best in predicting NAO onset, followed by NCEP, JMA, and then CMA. p]The forecasting performance of the ensemble mean is also investigated. It is found that, compared with the control forecast, the ensemble mean does not improve the forecasting skill with respect to the onset time of NAO events. Therefore, a confident forecast of NAO onset can only be achieved three to five days in advance.

Keywords

NAO onset operational forecast TIGGE dataset 

摘要

利用2006至2015年间的TIGGE数据集, 以逐日的NCEP-NCAR再分析资料作为标准, 检验了欧洲中期天气预报中心(ECMWF), 美国国家环境预报中心(NCEP), 日本气象厅(JMA)和中国气象局(CMA)对NAO事件发生的预报水平. 在研究的时段内, 共选取了22个NAO正位相(NAO+)事件和9个NAO负位相(NAO−)事件. 对于所选取的NAO事件, 控制预报可以提前3–5天预报出事件的发生. 另外, NAO−事件预报失败率高于NAO+事件, 说明NAO−事件的发生预报更加困难. 对于NAO发生的预报, ECMWF在四个业务中心里表现最好, 其次是NCEP, JMA和CMA. 此外还研究了集合平均的预报水平. 研究发现, 相比于控制预报, 集合平均并不能有效地提高NAO事件发生的预报时效. 因此, 对于NAO事件发生, 可靠的预报时效只有3–5天.

关键词

NAO 爆发 业务预报 TIGGE 数据集 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors are grateful to the two anonymous reviewers for their helpful comments on this paper. This study was supported by the National Natural Science Foundation of China (Grant Nos. 41230420 and 41775001).

References

  1. Barnes, E. A., and D. L. Hartmann, 2010: Dynamical feedbacks and the persistence of the NAO. J. Atmos. Sci., 67(3), 851–865,  https://doi.org/10.1175/2009JAS3193.1.CrossRefGoogle Scholar
  2. Benedict, J. J., S. Lee, and S. B. Feldstein, 2004: Synoptic view of the North Atlantic Oscillation. J. Atmos. Sci., 61(2), 121–144,  https://doi.org/10.1175/1520-0469(2004)061<0121:SVOTNA>2.0.CO;2.CrossRefGoogle Scholar
  3. Buizza, R., and M. Leutbecher, 2015: The forecast skill horizon. Quart. J. Roy. Meteor. Soc., 141(693), 3366–3382,  https://doi.org/10.1002/qj.2619.CrossRefGoogle Scholar
  4. Diao, Y. N., S. P. Xie, and D. H. Luo, 2015: Asymmetry of winter European surface air temperature extremes and the North Atlantic Oscillation. J. Climate, 28(2), 517–530,  https://doi.org/10.1175/JCLI-D-13-00642.1.CrossRefGoogle Scholar
  5. Feldstein, S. B., 2000: Is interannual zonal mean flow variability simply climate noise? J. Climate, 13(13), 2356–2362,  https://doi.org/10.1175/1520-0442(2000)013<2356:IIZMFV>2.0.CO;2.CrossRefGoogle Scholar
  6. Feldstein, S. B., 2003: The dynamics of NAO teleconnection pattern growth and decay. Quart. J. Roy. Meteor. Soc., 129(589), 901–924, https://doi.org/10.1256/qj.02.76.CrossRefGoogle Scholar
  7. Hollingsworth, A., K. Arpe, M. Tiedtke, M. Capaldo, and H. Savijärvi, 1980: The performance of a medium-range forecast model in winter–impact of physical parameterizations. Mon. Wea. Rev., 108(11), 1736–1773,  https://doi.org/10.1175/1520-0493(1980)108<1736:TPOAMR>2.0.CO;2.CrossRefGoogle Scholar
  8. Hurrell, J. W., 1995: Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 269(5224), 676–679,  https://doi.org/10.1126/science.269.5224.676.CrossRefGoogle Scholar
  9. Jiang, Z. N., X. Wang, and D. H. Wang, 2015: Exploring the phasestrength asymmetry of the North Atlantic Oscillation using conditional nonlinear optimal perturbation. Adv. Atmos. Sci., 32(5), 671–679,  https://doi.org/10.1007/s00376-014-4094-3.CrossRefGoogle Scholar
  10. Johansson, Å., 2007: Prediction skill of the NAO and PNA from daily to seasonal time scales. J. Climate, 20(10), 1957–1975,  https://doi.org/10.1175/JCLI4072.1.CrossRefGoogle Scholar
  11. Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77(3), 437–472,  https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.CrossRefGoogle Scholar
  12. Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50–year reanalysis: Monthly means CD–ROM and documentation. Bull. Amer. Meteor. Soc., 82(2), 247–268,  https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.CrossRefGoogle Scholar
  13. Leith, C. E., 1974: Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev., 102(6), 409–418,  https://doi.org/10.1175/1520-0493(1974)102<0409:TSOMCF>2.0.CO;2.CrossRefGoogle Scholar
  14. Leutbecher, M., and T. N. Palmer, 2008: Ensemble forecasting. J. Comput. Phys., 227(7), 3515–3539,  https://doi.org/10.1016/j.jcp.2007.02.014. JULY 2019 DAI ET AL. 765CrossRefGoogle Scholar
  15. Li, J. P., and J. X. L. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20(5), 661–676,  https://doi.org/10.1007/BF02915394.CrossRefGoogle Scholar
  16. Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141,  https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.CrossRefGoogle Scholar
  17. Luo, D. H., A. R. Lupo, and H. Wan, 2007: Dynamics of eddydriven low-frequency dipole modes. Part I: A simple model of North Atlantic Oscillation. J. Atmos. Sci., 64(1), 3–28,  https://doi.org/10.1175/JAS3818.1.CrossRefGoogle Scholar
  18. Luo, D. H., Y. Yao, and S. B. Feldstein, 2014: Regime transition of the North Atlantic Oscillation and the extreme cold event over Europe in January-February 2012. Mon. Wea. Rev., 142(12), 4735–4757,  https://doi.org/10.1175/MWR-D-13-00234.1.CrossRefGoogle Scholar
  19. Luo, D. H., Y. Yao, A. G. Dai, and S. B. Feldstein, 2015: The positive North Atlantic Oscillation with downstream blocking and Middle East snowstorms: The large-scale environment. J. Climate, 28(16), 6398–6418,  https://doi.org/10.1175/JCLID-15-0184.1.CrossRefGoogle Scholar
  20. Luo, D. H., Y. Q. Xiao, Y. N. Diao, A. G. Dai, C. L. Franzke, and I. Simmonds, 2016: Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part II: The link to the North Atlantic Oscillation. J. Climate, 29(11), 3949–3971,  https://doi.org/10.1175/JCLI-D-15-0612.1.CrossRefGoogle Scholar
  21. Marshall, J., and Coauthors, 2001: North Atlantic climate variability: Phenomena, impacts and mechanisms. International Journal of Climatology, 21(15), 1863–1898,  https://doi.org/10.1002/joc.693.CrossRefGoogle Scholar
  22. Murphy, A. H., and E. S. Epstein, 1989: Skill scores and correlation coefficients in model verification. Mon. Wea. Rev., 117(3), 572–582,  https://doi.org/10.1175/1520-0493(1989)117<0572:SSACCI>2.0.CO;2.CrossRefGoogle Scholar
  23. Park, Y. Y., R. Buizza, and M. Leutbecher, 2008: TIGGE: Preliminary results on comparing and combining ensembles. Quart. J. Roy. Meteor. Soc., 134(637), 2029–2050,  https://doi.org/10.1002/qj.334.CrossRefGoogle Scholar
  24. Scaife, A. A., C. K. Folland, L. V. Alexander, A. Moberg, and J. R. Knight, 2008: European climate extremes and the North Atlantic Oscillation. J. Climate, 21(1), 72–83,  https://doi.org/10.1175/2007JCLI1631.1.CrossRefGoogle Scholar
  25. Scaife, A. A., and Coauthors, 2014: Skillful long-range prediction of European and North American winters. Geophys. Res. Lett., 41(7), 2514–2519,  https://doi.org/10.1002/2014GL059637.CrossRefGoogle Scholar
  26. Seager, R., Y. Kushnir, J. Nakamura, M. Ting, and N. Naik, 2010: Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10. Geophys. Res. Lett., 37(14), L14703,  https://doi.org/10.1029/2010GL043830.CrossRefGoogle Scholar
  27. Song, J., 2016: Understanding anomalous eddy vorticity forcing in North Atlantic Oscillation events. J. Atmos. Sci., 73(8), 2985–3007,  https://doi.org/10.1175/JAS-D-15-0253.1.CrossRefGoogle Scholar
  28. Swinbank, R., and Coauthors, 2016: The TIGGE project and its achievements. Bull. Amer. Meteor. Soc., 97(1), 49–67,  https://doi.org/10.1175/BAMS-D-13-00191.1.CrossRefGoogle Scholar
  29. Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13(5), 1000–1016,  https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.CrossRefGoogle Scholar
  30. Thompson, D. W. J., J. M. Wallace, and G. C. Hegerl, 2000: Annular modes in the extratropical circulation. Part II: Trends. J. Climate, 13(5), 1018–1036,  https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2.CrossRefGoogle Scholar
  31. Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140(683), 1889–1899,  https://doi.org/10.1002/qj.2256.CrossRefGoogle Scholar
  32. Walker, G. T., and E. W. Bliss, 1932: World weather V. Mem. Roy. Meteor. Soc., 4, 53–84.Google Scholar
  33. Whan, K., and Zwiers, F., 2017: The impact of ENSO and the NAO on extreme winter precipitation in North America in observations and regional climate models. Climate Dyn., 48(5–6), 1401–1411,  https://doi.org/10.1007/s00382-016-3148-x.CrossRefGoogle Scholar
  34. Woollings, T., B. Hoskins., M. Blackburn, and P. Berrisford, 2008: A new Rossby wave-breaking interpretation of the North Atlantic Oscillation. J. Atmos. Sci., 65(2), 609–626,  https://doi.org/10.1175/2007JAS2347.1.CrossRefGoogle Scholar
  35. Yao, Y., D. H. Luo, A. G. Dai, and S. B. Feldstein, 2016: The positive North Atlantic oscillation with downstream blocking and middle East Snowstorms: Impacts of the North Atlantic Jet. J. Climate, 29(5), 1853–1876,  https://doi.org/10.1175/JCLID-15-0350.1.CrossRefGoogle Scholar
  36. Yiou, P., and M. Nogaj, 2004: Extreme climatic events and weather regimes over the North Atlantic: When and where? Geophys. Res. Lett., 31(7), L07202,  https://doi.org/10.1029/2003GL019119.CrossRefGoogle Scholar
  37. Zuo, J. Q., H. L. Ren, W. J. Li, and L. Wang, 2016: Interdecadal variations in the relationship between the winter North Atlantic oscillation and temperature in south-Central China. J. Climate, 29(20), 7477–7493,  https://doi.org/10.1175/JCLID-15-0873.1.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric SciencesFudan UniversityShanghaiChina
  2. 2.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina

Personalised recommendations