Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 6, pp 658–668 | Cite as

Indian Ocean Dipole-related Predictability Barriers Induced by Initial Errors in the Tropical Indian Ocean in a CGCM

  • Rong Feng
  • Wansuo DuanEmail author
Original Paper
  • 5 Downloads

Abstract

Using GFDL CM2p1 (Geophysical Fluid Dynamics Laboratory Climate Model, version 2p1), the effects of initial sea temperature errors on the predictability of the Indian Ocean Dipole (IOD) are explored. When initial temperature errors are superimposed on the tropical Indian Ocean, a winter predictability barrier (WPB) and a summer predictability barrier (SPB) exist in IOD predictions. The existence of the WPB has a close relation with El Niño-Southern Oscillation (ENSO) in the winter of the growing phase of positive IOD events. That is, when ENSO exists in winter, no WPB appears in IOD predictions, and vice versa. In contrast, there is no inherent connection between the existence of the SPB and ENSO. Only the dominant spatial pattern of SPB-related initial errors is studied in this paper, which presents a significant west-east dipole pattern in the tropical Indian Ocean and is similar to that of WPB-related initial errors in previous studies. The SPB-related initial errors superimposed on the tropical Indian Ocean induce the sea surface temperature (SST) and wind anomalies in the tropical Pacific Ocean. Then, under the interaction between the Indian and Pacific oceans through the atmospheric bridge and Indonesian Throughflow, a west-east dipole pattern of SST errors appears in summer, which is further strengthened under the Bjerknes feedback and yields a significant SPB.

Key words

predictability barrier initial errors Indian Ocean Dipole Indian Ocean 

摘要

利用GFDL CM2p1模式, 本文探讨了初始海温误差对印度洋偶极子(IOD)事件可预报性的影响. 当热带印度洋存在初始海温误差时, IOD预报发生了冬季预报障碍(WPB)现象和夏季预报障碍(SPB)现象. WPB发生与否与正IOD事件发展位相冬季的厄尔尼诺-南方涛动(ENSO)有关. 即当冬季存在ENSO时, IOD预测不发生WPB现象, 反之亦然. 相比之下, SPB发生与否和ENSO没有必然联系. 此外, 进一步探讨了最容易导致SPB现象的初始海温误差的主要模态, 指出该模态在热带印度洋上表现为东-西偶极子型, 这和前人研究中最容易导致WPB现象的初始海温误差模态相似. 当在热带印度洋上叠加这些初始海温误差后, 热带太平洋上出现了海表温度异常和风场异常, 进而通过大气桥和印尼贯穿流的作用影响热带印度洋, 使之在夏季出现了东-西偶极子型的海表温度异常, 该异常在Bjerknes作用下快速发展, 加强, 最终导致SPB现象的发生.

关键词

预报障碍 初始误差 印度洋偶极子 印度洋 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was jointly sponsored by the National Key Research and Development Program of China (Grant No. 2017YFA0604201), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20060501), the National Natural Science Foundation of China (Grant Nos. 41876024 and 41530961), and the National Programme on Global Change and Air-Sea Interaction (Grant No. GASI-IPOVAI-06).

References

  1. Annamalai, H., and R. Murtugudde, 2004: Role of the Indian Ocean in regional climate variability. Earth’s Climate: The Ocean-Atmosphere Interaction, C. Wang et al., Eds., American Geophysical Union, 213–246.Google Scholar
  2. Ansell, T., C. J. C. Reason, and G. Meyers, 2000: Variability in the tropical southeast Indian Ocean and links with southeast Australian winter rainfall. Geophys. Res. Lett., 27, 3977–3980,  https://doi.org/10.1029/2000GL011856.CrossRefGoogle Scholar
  3. Behera, S. K., J. J. Luo, S. Masson, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2005: Paramount impact of the Indian Ocean dipole on the East African short rains: A CGCM study. J. Climate, 18, 4514–4530,  https://doi.org/10.1175/JCLI3541.1.CrossRefGoogle Scholar
  4. Black, E., J. Slingo, and K. P. Sperber, 2003: An observational study of the relationship between excessively strong short rains in coastal east Africa and Indian Ocean SST. Mon. Wea. Rev., 131(1), 74–94, https://doi.org/10.1175/1520-0493(2003)131<0074:AOSOTR>2.0.CO;2.CrossRefGoogle Scholar
  5. Cai, W., T. Cowan, and A. Sullivan, 2009: Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall. Geophys. Res. Lett., 36, L11705,  https://doi.org/10.1029/2009GL037604.CrossRefGoogle Scholar
  6. Cai, W. J., H. H. Hendon, and G. Meyers, 2005: Indian Ocean dipolelike variability in the CSIRO Mark 3 coupled climate model. J. Climate, 18, 1449–1468,  https://doi.org/10.1175/JCLI3332.1.CrossRefGoogle Scholar
  7. Chen, D. K., 2011: Indo-Pacific tripole: An intrinsic mode of tropical climate variability. Advances in Geosciences, 24, 1–18.CrossRefGoogle Scholar
  8. Chowdary, J. S., and C. Gnanaseelan, 2007: Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. International Journal of Climatology, 27, 1421–1438,  https://doi.org/10.1002/joc.1482.CrossRefGoogle Scholar
  9. Duan, W. S., Y. S. Yu, H. Xu, and P. Zhao, 2013: Behaviors of nonlinearities modulating the El Niñno events induced by optimal precursory disturbances. Climate Dyn., 40, 1399–1413,  https://doi.org/10.1007/s00382-012-1557-z.CrossRefGoogle Scholar
  10. Feng, R., and W. S. Duan, 2018: Investigating the initial errors that cause predictability barriers for Indian Ocean Dipole events using CMIP5 model outputs. Adv. Atmos. Sci., 35(10), 1305–1320,  https://doi.org/10.1007/s00376-018-7214-7.CrossRefGoogle Scholar
  11. Feng, R., W. S. Duan, and M. Mu, 2014a: The “winter predictability barrier” for IOD events and its error growth dynamics: Results from a fully coupled GCM. J. Geophys. Res., 119, 8688–8708,  https://doi.org/10.1002/2014JC010473.CrossRefGoogle Scholar
  12. Feng, R., M. Mu, and W. S. Duan, 2014b: Study on the “winter persistence barrier” of Indian Ocean dipole events using observation data and CMIP5 model outputs. Theor. Appl. Climatol., 118(3), 523–534,  https://doi.org/10.1007/s00704-013-1083-x.CrossRefGoogle Scholar
  13. Feng, R., W. S. Duan, and M. Mu, 2017: Estimating observing locations for advancing beyond the winter predictability barrier of Indian Ocean dipole event predictions. Climate Dyn., 48, 1173–1185,  https://doi.org/10.1007/s00382-016-3134-3.CrossRefGoogle Scholar
  14. GFDL Global Atmospheric Model Development Team, 2004: The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations. J. Climate, 17, 4641–4673,  https://doi.org/10.1175/JCLI-3223.1.CrossRefGoogle Scholar
  15. Griffies, S. M., 2009: Elements of MOM4p1: GFDL ocean group. Technical Report No.6, 444 pp.Google Scholar
  16. Gualdi, S., E. Guilyardi, A. Navarra, S. Masina, and P. Delecluse, 2003: The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Climate Dyn., 20, 567–582,  https://doi.org/10.1007/s00382-002-0295-z.CrossRefGoogle Scholar
  17. Kaplan, A., M. A. Cane, Y. Kushnir, A. C. Clement, M. B. Blumenthal, and B. Rajagopalan, 1998: Analyses of global sea surface temperature 1856–1991. J. Geophys. Res., 103, 18 567–185 89,  https://doi.org/10.1029/97JC01736.CrossRefGoogle Scholar
  18. Li, T., B. Wang, C. P. Chang, and Y. S. Zhang, 2003: A theory for the Indian Ocean dipole-zonal mode. J. Atmos. Sci., 60(17), 2119–2135, https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2.CrossRefGoogle Scholar
  19. Lian, T., D. K. Chen, Y. M. Tang, and B. G. Jin, 2014: A theoretical investigation of the tropical Indo-Pacific tripole mode. Science China Earth Sciences, 57, 174–188,  https://doi.org/10.1007/s11430-013-4762-7.CrossRefGoogle Scholar
  20. Liu, D., W. S. Duan, R. Feng, and Y. M. Tang, 2018: Summer Predictability Barrier of Indian Ocean dipole events and corresponding error growth dynamics. J. Geophys. Res., 123, 3635–3650,  https://doi.org/10.1029/2017JC013739.CrossRefGoogle Scholar
  21. Loschnigg, J., G. A. Meehl, P. J. Webster, J. M. Arblaster, and G. P. Compo, 2003: The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM. J. Climate, 16, 1617–1642, https://doi.org/10.1175/1520-0442(2003)016<1617:TAMTTB>2.0.CO;2.CrossRefGoogle Scholar
  22. Luo, J. J., S. Masson, S. Behera, S. Shingu, and T. Yamagata, 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18(21), 4474–4497,  https://doi.org/10.1175/JCLI3526.1.CrossRefGoogle Scholar
  23. Luo, J. J., S. Masson, S. Behera, and T. Yamagata, 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20(10), 2178–2190,  https://doi.org/10.1175/JCLI4132.1.CrossRefGoogle Scholar
  24. Murtugudde, R., J. P. McCreary Jr., and A. J. Busalacchi, 2000: Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997–1998. J. Geophys. Res., 105(C2), 3295–3306,  https://doi.org/10.1029/1999JC900294.CrossRefGoogle Scholar
  25. Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25, 151–169,  https://doi.org/10.3354/cr025151.CrossRefGoogle Scholar
  26. Saji, N. H., B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363,  https://doi.org/10.1038/43854.Google Scholar
  27. Sayantani, O., C. Gnanaseelan, and J. S. Chowdary, 2014: The role of Arabian Sea in the evolution of Indian Ocean Dipole. International Journal of Climatology, 34, 1845–1859,  https://doi.org/10.1002/joc.3805.CrossRefGoogle Scholar
  28. Shi, L., H. H. Hendon, O. Alves, J. J. Luo, M. Balmaseda, and D. Anderson, 2012: How predictable is the Indian Ocean dipole? Mon. Wea. Rev., 140(12), 3867–3884,  https://doi.org/10.1175/MWR-D-12-00001.1.CrossRefGoogle Scholar
  29. Song, Q., G. A. Vecchi, and A. J. Rosati, 2007: Indian Ocean variability in the GFDL coupled climate model. J. Climate, 20, 2895–2916,  https://doi.org/10.1175/JCLI4159.1.CrossRefGoogle Scholar
  30. Stuecker, M. F., A. Timmermann, F. F. Jin, Y. Chikamoto, W. J. Zhang, A. T. Wittenberg, E. Widiasih, and S. Zhao, 2017: Revisiting ENSO/Indian Ocean Dipole phase relationships, Geophys. Res. Lett., 44, 2481–2492,  https://doi.org/10.1002/2016GL072308.CrossRefGoogle Scholar
  31. Vinayachandran, P. N., S. Iizuka, and T. Yamagata, 2002: Indian Ocean dipole mode events in an ocean general circulation model. Deep Sea Research Part II: Topical Studies in Oceanography, 49(7–8), 1573–1596,  https://doi.org/10.1016/S0967-0645(01)00157-6.CrossRefGoogle Scholar
  32. Wajsowicz, R. C., 2004: Climate variability over the tropical Indian Ocean sector in the NSIPP seasonal forecast system. J. Climate, 17(24), 4783–4804,  https://doi.org/10.1175/JCLI-3239.1.CrossRefGoogle Scholar
  33. Wajsowicz, R. C., 2005: Potential predictability of tropical Indian Ocean SST anomalies. Geophys. Res. Lett., 32(24), L24702. https://doi.org/10.1029/2005GL024169.CrossRefGoogle Scholar
  34. Wang, Q., M. Mu, and H. A. Dijkstra, 2012: Application of the conditional nonlinear optimal perturbation method to the predictability study of the Kuroshio large meander. Adv. Atmos. Sci., 29(1), 118–134,  https://doi.org/10.1007/s00376-011-0199-0.CrossRefGoogle Scholar
  35. Webster, P. J., A. M. Moore, J. P. Loschnigg, and R. R. Leben, 1999: Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401(6751), 356–360,  https://doi.org/10.1038/43848.CrossRefGoogle Scholar
  36. Weller, E., and W. J. Cai, 2013: Asymmetry in the IOD and ENSO teleconnection in a CMIP5 model ensemble and its relevance to regional rainfall. J. Climate, 26, 5139–5149,  https://doi.org/10.1175/JCLI-D-12-00789.1.CrossRefGoogle Scholar
  37. Yamagata, T., S. K. Behera, J. J. Luo, S. Masson, M. R. Jury, and S. A. Rao, 2004: Coupled ocean-atmosphere variability in the tropical Indian Ocean. Earth’s Climate: The Ocean-Atmosphere Interaction, C. Wang, Eds., American Geophysical Union, 189–212.Google Scholar
  38. Yu, J. Y., and K. M. Lau, 2005: Contrasting Indian Ocean SST variability with and without ENSO influence: A coupled atmosphere-ocean GCM study. Meteor. Atmos. Phys., 90(3–4), 179–191,  https://doi.org/10.1007/s00703-004-0094-7.CrossRefGoogle Scholar
  39. Yu, Y. S., W. S. Duan, and M. Mu, 2009: Dynamics of nonlinear error growth and season-dependent predictability of El Niño events in the Zebiak-Cane model. Quart. J. Roy. Meteor. Soc., 135, 2146–2160,  https://doi.org/10.1002/qj.526.CrossRefGoogle Scholar
  40. Zhang, W. J., Y. L. Wang, F. F. Jin, M. F. Stuecker, and A. G. Turner, 2015: Impact of different El Niño types on the El Niño/IOD relationship. Geophys. Res. Lett., 42(20), 8570–8576,  https://doi.org/10.1002/2015GL065703.CrossRefGoogle Scholar
  41. Zubair, L., S. A. Rao, and T. Yamagata, 2003: Modulation of Sri Lankan Maharainfall by the Indian Ocean dipole. Geophys. Res. Lett., 30(2), 1063,  https://doi.org/10.1029/2002GL015639.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations