Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 6, pp 669–677 | Cite as

Determination of the Backward Predictability Limit and Its Relationship with the Forward Predictability Limit

  • Xuan Li
  • Ruiqiang DingEmail author
  • Jianping Li
Original Paper
  • 17 Downloads

Abstract

In this work, two types of predictability are proposed—forward and backward predictability—and then applied in the nonlinear local Lyapunov exponent approach to the Lorenz63 and Lorenz96 models to quantitatively estimate the local forward and backward predictability limits of states in phase space. The forward predictability mainly focuses on the forward evolution of initial errors superposed on the initial state over time, while the backward predictability is mainly concerned with when the given state can be predicted before this state happens. From the results, there is a negative correlation between the local forward and backward predictability limits. That is, the forward predictability limits are higher when the backward predictability limits are lower, and vice versa. We also find that the sum of forward and backward predictability limits of each state tends to fluctuate around the average value of sums of the forward and backward predictability limits of sufficient states. Furthermore, the average value is constant when the states are sufficient. For different chaotic systems, the average value is dependent on the chaotic systems and more complex chaotic systems get a lower average value. For a single chaotic system, the average value depends on the magnitude of initial perturbations. The average values decrease as the magnitudes of initial perturbations increase.

Key words

nonlinear local Lyapunov exponent forward and backward predictability limit negative correlation average value 

摘要

在研究工作中, 提出了向前与向后可预报性两类可预报性. 然后利用非线性局部Lyapunov指数(NLLE)方法定量估计了Lorenz63和Lorenz96模型中相空间状态点的局部向前与向后可预报期限. 向前可预报性主要关注与叠加在初始状态上初始误差随时间的向前演变, 而向后可预报性则主要关注给定状态在它发生之前何时被预测出来. 研究结果表明, 向前与向后可预报期限具有负相关关系. 也就是说, 当向前可预报期限比较大时, 向后可预报期限比较小, 反之亦然. 我们还发现每一个状态点的向前与向后可预报期限之和均在足够多的状态的两类可预报期限之和的平均值附近振荡. 此外, 当状态点的数目足够多时, 此平均值为常数. 对于不同的混沌系统, 此平均值的大小取决于混沌系统. 更加复杂的混沌系统拥有较低的平均值. 对于单个混沌系统, 此平均值依赖于初始误差量级的大小. 平均值随之初始误差量级的增大而减小.

关键词

非线性局部Lyapunov指数 向前与向后可预报期限 负相关性 平均值 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was jointly supported by the National Natural Science Foundation of China for Excellent Young Scholars (Grant No. 41522502), the National Program on Global Change and Air-Sea Interaction (Grant Nos. GASI-IPOVAI-06 and GASI-IPOVAI-03), and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2015BAC03B07).

References

  1. Chen, B. H., J. P. Li, and R. Q. Ding, 2006: Nonlinear local Lyapunov exponent and atmospheric predictability research. Science in China Series D: Earth Sciences, 49, 1111–1120,  https://doi.org/10.1007/s11430-006-1111-0.CrossRefGoogle Scholar
  2. Chou, J. F., 1989: Predictability of the atmosphere. Adv. Atmos. Sci., 6(3), 335–346,  https://doi.org/10.1007/BF02661539.CrossRefGoogle Scholar
  3. Dalcher, A., and E. Kalnay, 1987: Error growth and predictability in operational ECMWF forecasts. Tellus A: Dynamic Meteorology and Oceanography, 39, 474–491,  https://doi.org/10.3402/tellusa.v39i5.11774.CrossRefGoogle Scholar
  4. Ding, R. Q., and J. P. Li, 2007: Nonlinear finite-time Lyapunov exponent and predictability. Physics Letters A, 364, 396–400,  https://doi.org/10.1016/j.physleta.2006.11.094.CrossRefGoogle Scholar
  5. Ding, R. Q., and J. P. Li, 2009: Application of nonlinear error growth dynamics in studies of atmospheric predictability. Acta Meteorologica Sinica, 67, 241–249,  https://doi.org/10.11676/qxxb2009.024. (in Chinese with English abstract)Google Scholar
  6. Ding, R. Q., J. P. Li, and K. J. Ha, 2008: Nonlinear local Lyapunov exponent and quantification of local predictability. Chinese Physics Letters, 25, 1919–1922,  https://doi.org/10.1088/0256-307X/25/5/109.CrossRefGoogle Scholar
  7. Ding, R. Q., J. P. Li, and K. H. Seo, 2010: Predictability of the Madden-Julian oscillation estimated using observational data. Mon. Wea. Rev., 138, 1004–1013,  https://doi.org/10.1175/2009MWR3082.1.CrossRefGoogle Scholar
  8. Ding, R. Q., J. P. Li, F. Zheng, J. Feng, and D. Q. Liu, 2015: Estimating the limit of decadal-scale climate predictability using observational data. Climate Dyn., 46, 1563–1580,  https://doi.org/10.1007/s00382-015-2662-6.CrossRefGoogle Scholar
  9. Duan, W. S., and M. Mu, 2009: Conditional nonlinear optimal perturbation: Applications to stability, sensitivity, and predictability. Science in China Series D: Earth Sciences, 52, 883–906,  https://doi.org/10.1007/s11430-009-0090-3.CrossRefGoogle Scholar
  10. Duan, W. S., R. Q. Ding, and F. F. Zhou, 2013: Several dynamical methods used in predictability studies for numerical weather forecasts and climate prediction. Climatic and Environmental Research, 18, 524–538,  https://doi.org/10.3878/j.issn.1006-9585.2012.12009. (in Chinese)Google Scholar
  11. Farrell, B. F., 1990: Small error dynamics and the predictability of atmospheric flows. J. Atmos. Sci., 47, 2409–2416, https://doi.org/10.1175/1520-0469(1990)047<2409:SEDATP>2.0.CO;2.CrossRefGoogle Scholar
  12. Feng, G. L., H. X. Cao, X. Q. Gao, W. J. Dong, and J. F. Chou, 2001: Prediction of precipitation during summer monsoon with self-memorial model. Adv. Atmos. Sci, 18(5), 701–709,  https://doi.org/10.1007/BF03403495.CrossRefGoogle Scholar
  13. Gao, X. Q., G. L. Feng, W. J. Dong, and J. F. Chou, 2003: On the predictability of chaotic systems with respect to maximally effective computation time. Acta Mechanica Sinica, 19, 134–139,  https://doi.org/10.1007/BF02487674.CrossRefGoogle Scholar
  14. Lacarra, J.-F., and O. Talagrand, 1988: Short-range evolution of small perturbations in a barotropic model. Tellus A: Dynamic Meteorology and Oceanography, 40, 81–95,  https://doi.org/10.3402/tellusa.v40i2.11784.CrossRefGoogle Scholar
  15. Leith, C. E., 1971: Atmospheric predictability and two-dimensional turbulence. J. Atmos. Sci., 28, 145–161, https://doi.org/10.1175/1520-0469(1971)028<0145:APATDT>2.0.CO;2.CrossRefGoogle Scholar
  16. Li, J. P., and R. Q. Ding, 2011a: Temporal-spatial distribution of atmospheric predictability limit by local dynamical analogs. Mon. Wea. Rev., 139, 3265–3283,  https://doi.org/10.1175/MWR-D-10-05020.1.CrossRefGoogle Scholar
  17. Li, J. P., and R. Q. Ding, 2011b: Relationship between the predictability limit and initial error in chaotic systems. Chaotic Systems, InTech, 39–50.Google Scholar
  18. Li, J. P., and R. Q. Ding, 2013: Temporal-spatial distribution of the predictability limit of monthly sea surface temperature in the global oceans. International Journal of Climatology, 33, 1936–1947,  https://doi.org/10.1002/joc.3562.CrossRefGoogle Scholar
  19. Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141, https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.CrossRefGoogle Scholar
  20. Lorenz, E. N., 1965: A study of the predictability of a 28-variable atmospheric model. Tellus, 17, 321–333,  https://doi.org/10.3402/tellusa.v17i3.9076.CrossRefGoogle Scholar
  21. Lorenz, E. N., 1969a: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289–307,  https://doi.org/10.1111/j.2153-3490.1969.tb00444.x.CrossRefGoogle Scholar
  22. Lorenz, E. N., 1969b: Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sci., 26, 636–646, https://doi.org/10.1175/1520-0469(1969)26<636:APARBN>2.0.CO;2.CrossRefGoogle Scholar
  23. Lorenz, E. N., 1982: Atmospheric predictability experiments with a large numerical model. Tellus, 34, 505–513,  https://doi.org/10.3402/tellusa.v34i6.10836.CrossRefGoogle Scholar
  24. Lorenz, E. N., 1996: Predictability: A problem partly solved. Proc Seminar on Predictability, Shinfield Park, Reading, ECMWF, 1–18.Google Scholar
  25. Luo, J.-J., S. Masson, S. K. Behera, and T. Yamagata, 2008: Extended ENSO predictions using a fully coupled ocean-atmosphere model. J. Climate, 21, 84–93,  https://doi.org/10.1175/2007JCLI1412.1.CrossRefGoogle Scholar
  26. Mu, M., and J. C. Wang, 2001: Nonlinear fastest growing perturbation and the first kind of predictability. Science in China Series D: Earth Sciences, 44, 1128–1139,  https://doi.org/10.1007/BF02906869.CrossRefGoogle Scholar
  27. Mu, M., and W. S. Duan, 2003: A new approach to studying ENSO predictability: Conditional nonlinear optimal perturbation. Chinese Science Bulletin, 48, 1045–1047,  https://doi.org/10.1007/BF03184224.CrossRefGoogle Scholar
  28. Mu, M., W. S. Duan, and J. C. Wang, 2002: The predictability problems in numerical weather and climate prediction. Adv. Atmos. Sci., 19(2), 191–204,  https://doi.org/10.1007/s00376-002-0016-x.CrossRefGoogle Scholar
  29. Mu, M., H. Xu, and W. S. Duan, 2007: A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys. Res. Lett., 34, L03709,  https://doi.org/10.1029/2006GL027412.CrossRefGoogle Scholar
  30. Mukougawa, H., M. Kimoto, and S. Yoden, 1991: A relationship between local error growth and quasi-stationary states: Case study in the Lorenz system. J. Atmos. Sci., 48, 1231–1237, https://doi.org/10.1175/1520-0469(1991)048<1231:ARBLEG>2.0.CO;2.CrossRefGoogle Scholar
  31. Nese, J. M., 1989: Quantifying local predictability in phase space. Physica D: Nonlinear Phenomena, 35, 237–250,  https://doi.org/10.1016/0167-2789(89)90105-X.CrossRefGoogle Scholar
  32. Peng, Y. H., W. S. Duan, and J. Xiang, 2011: Effect of stochastic MJO forcing on ENSO predictability. Adv. Atmos. Sci., 28(6), 1279–1290,  https://doi.org/10.1007/s00376-011-0126-4.CrossRefGoogle Scholar
  33. Simmons, A. J., R. Mureau, and T. Petroliagis, 1995: Error growth and estimates of predictability from the ECMWF forecasting system. Quart. J. Roy. Meteor. Soc., 121, 1739–1771,  https://doi.org/10.1002/qj.49712152711.CrossRefGoogle Scholar
  34. Thompson, P. D., 1957: Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 9, 275–295,  https://doi.org/10.3402/tellusa.v9i3.9111.CrossRefGoogle Scholar
  35. Toth, Z., 1991: Estimation of atmospheric predictability by circulation analogs. Mon. Wea. Rev., 119, 65–72, https://doi.org/10.1175/1520-0493(1991)119<0065:EOAPBC>2.0.CO;2.CrossRefGoogle Scholar
  36. Trevisan, A., and R. Legnani, 1995: Transient error growth and local predictability: A study in the Lorenz system. Tellus A: Dynamic Meteorology and Oceanography, 47, 103–117,  https://doi.org/10.3402/tellusa.v47i1.11496.CrossRefGoogle Scholar
  37. Yoden, S., and M. Nomura, 1993: Finite-time Lyapunov stability analysis and its application to atmospheric predictability. J. Atmos. Sci., 50, 1531–1543, https://doi.org/10.1175/1520-0469(1993)050<1531:FTLSAA>2.0.CO;2.CrossRefGoogle Scholar
  38. Zhou, F. F., R. Q. Ding, G. L. Feng, Z. T. Fu, and W. S. Duan, 2012: Progress in the study of nonlinear atmospheric dynamics and predictability of weather and climate in China (2007–2011). Adv. Atmos. Sci., 29(5), 1048–1062,  https://doi.org/10.1007/s00376-012-1204-y.CrossRefGoogle Scholar
  39. Ziehmann, C., L. A. Smith, and J. Kurths, 2000: Localized Lyapunov exponents and the prediction of predictability. Physics Letters A, 271, 237–251,  https://doi.org/10.1016/S0375-9601(00)00336-4.CrossRefGoogle Scholar
  40. Zou, M. W., G. L. Feng, and X. Q. Gao, 2006: Sensitivity of intrinsic mode functions of Lorenz system to initial values based on EMD method. Chinese Physics, 15, 1384–1390,  https://doi.org/10.1088/1009-1963/15/6/043.CrossRefGoogle Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.College of Earth ScienceUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory for Regional Oceanography and Numerical ModelingQingdao National Laboratory for Marine Science and TechnologyQingdaoChina
  4. 4.College of Global Change and Earth System Sciences (GCESS)Beijing Normal UniversityBeijingChina

Personalised recommendations