Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 7, pp 679–696 | Cite as

Climate and Vegetation Drivers of Terrestrial Carbon Fluxes: A Global Data Synthesis

  • Shutao ChenEmail author
  • Jianwen Zou
  • Zhenghua Hu
  • Yanyu Lu
Original Paper

Abstract

The terrestrial carbon (C) cycle plays an important role in global climate change, but the vegetation and environmental drivers of C fluxes are poorly understood. We established a global dataset with 1194 available data across site-years including gross primary productivity (GPP), ecosystem respiration (ER), net ecosystem productivity (NEP), and relevant environmental factors to investigate the variability in GPP, ER and NEP, as well as their covariability with climate and vegetation drivers. The results indicated that both GPP and ER increased exponentially with the increase in mean annual temperature (MAT) for all biomes. Besides MAT, annual precipitation (AP) had a strong correlation with GPP (or ER) for non-wetland biomes. Maximum leaf area index (LAI) was an important factor determining C fluxes for all biomes. The variations in both GPP and ER were also associated with variations in vegetation characteristics. The model including MAT, AP and LAI explained 53% of the annual GPP variations and 48% of the annual ER variations across all biomes. The model based on MAT and LAI explained 91% of the annual GPP variations and 92.9% of the annual ER variations for the wetland sites. The effects of LAI on GPP, ER or NEP highlighted that canopy-level measurement is critical for accurately estimating ecosystem-atmosphere exchange of carbon dioxide. The present study suggests a significance of the combined effects of climate and vegetation (e.g., LAI) drivers on C fluxes and shows that climate and LAI might influence C flux components differently in different climate regions.

Keywords

net ecosystem productivity gross primary productivity ecosystem respiration controlling factors vegetation model 

摘要

陆地生态系统碳循环在全球气候变化中起着关键作用, 但其植被和环境驱动力尚未研究清楚. 我们建立了1个包含全球 1194 组不同观测地点或年份的总初级生产 (GPP), 生态系统呼吸 (ER), 净生态系统生产 (NEP) 和相关环境因子的数据集来研究 GPP, ER 和 NEP 的变异性以及这3个碳通量与气候和植被驱动因子的关系. 结果表明, 对于所有生物区系来说, GPP 和 ER 均随年平均温度的增加而增加, 非湿地生物区系的 GPP 和 ER 与年降水量存在极大的相关性, 在所有生物区系中一年中的最大叶面积指数也是影响碳通量时空变异的关键因子. 我们建立的基于所有生物区系的包含年平均温度, 年降水量和叶面积指数的模型解释了53%, 48%的 GPP 和 ER 的时空变异, 基于年平均温度和叶面积指数的模型可模拟湿地中 91%的 GPP变异和93%的ER变异. 叶面积指数对 GPP, ER和 NEP 的影响显示了冠层水平的测定对准确估计生态系统−大气的 CO2交换起着关键作用. 基于不同温度和降水阈值划分的不同气候区的模拟结果表明气候和植被驱动力 (如叶面积指数) 对陆地生态系统碳通量具有复合影响作用且其影响作用在不同的气候区存在差异.

关键词

净生态系统生产 总初级生产 生态系统呼吸 驱动因子 植被 模型 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 41775151, 41530533 and 41775152). Thousands of researchers who measured the C flux data collected here contributed greatly to this study. Their field measurement work is the basis of this global synthesis. We are grateful to the two anonymous reviewers for their helpful comments on our earlier draft.

Supplementary material

376_2019_8194_MOESM1_ESM.xls (690 kb)
Climate and Vegetation Drivers of Terrestrial Carbon Fluxes: A Global Data Synthesis
376_2019_8194_MOESM2_ESM.pdf (306 kb)
Climate and Vegetation Drivers of Terrestrial Carbon Fluxes: A Global Data Synthesis

References

  1. Akaike, H., 1974: A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723,  https://doi.org/10.1109/TAC.1974.1100705.Google Scholar
  2. Bahn, M., M. Knapp, Z. Garajova, N. Pfahringer, and A. Cernusca, 2006: Root respiration in temperate mountain grasslands differing in land use. Global Change Biology, 12(6), 995–1006,  https://doi.org/10.1111/j.1365-2486.2006.01144.x.Google Scholar
  3. Bahn, M., and Coauthors, 2008: Soil respiration in European grasslands in relation to climate and assimilate supply. Ecosystems, 11(8), 1352–1367,  https://doi.org/10.1007/s10021-008-9198-0.Google Scholar
  4. Bahn, M., M. Schmitt, R. Siegwolf, A. Richter, and N. Brüggemann, 2009: Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytologist, 182(2), 451–460,  https://doi.org/10.1111/j.1469-8137.2008.02755.x.Google Scholar
  5. Baldocchi, D., 2003: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 9(3), 479–492,  https://doi.org/10.1046/j.1365-2486.2003.00629.x.Google Scholar
  6. Baldocchi, D., 2008: ‘Breathing’ of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany, 56(1), 1–26,  https://doi.org/10.1071/BT07151.Google Scholar
  7. Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82(11), 2415–2434,  https://doi.org/10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.Google Scholar
  8. Baldocchi, D., C. Sturtevant, and F. Contributors, 2015: Does day and night sampling reduce spurious correlation between canopy photosynthesis and ecosystem respiration? Agricultural and Forest Meteorology, 207, 117–126,  https://doi.org/10.1016/j.agrformet.2015.03.010.Google Scholar
  9. Baldocchi, D., H. Chu, and M. Reichstein, 2018: Inter-annual variability of net and gross ecosystem carbon fluxes: A review. Agricultural and Forest Meteorology, 249, 520–533,  https://doi.org/10.1016/j.agrformet.2017.05.015.Google Scholar
  10. Ballantyne, A., and Coauthors, 2017: Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Change, 7, 148–152,  https://doi.org/10.1038/nclimate3204.Google Scholar
  11. Beer, C., and Coauthors, 2010: Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science, 329(5993), 834–838,  https://doi.org/10.1126/science.1184984.Google Scholar
  12. Beringer, J., S. J. Livesley, J. Randle, and L. B. Hutley, 2013: Carbon dioxide fluxes dominate the greenhouse gas exchanges of a seasonal wetland in the wet-dry tropics of northern Australia. Agricultural and Forest Meteorology, 182-183, 239–247,  https://doi.org/10.1016/j.agrformet.2013.06.008.Google Scholar
  13. Bond-Lamberty, B., and A. Thomson, 2010: Temperature-associated increases in the global soil respiration record. Nature, 464(7288), 579–582,  https://doi.org/10.1038/nature08930.Google Scholar
  14. Bridgham, S. D., J. P. Megonigal, J. K. Keller, N. B. Bliss, and C. Trettin, 2006: The carbon balance of North American wetlands. Wetlands, 26(3), 889–916,  https://doi.org/10.1672/0277-5212(2006)26[889:TCBONA]2.0.CO;2.Google Scholar
  15. Cameron, A. C., J. B. Gelbach, and D. L. Miller, 2008: Bootstrap-based improvements for inference with clustered errors. Review of Economics and Statistics, 90(3), 414–427,  https://doi.org/10.1162/rest.90.3.414.Google Scholar
  16. Canadell, J. G., and Coauthors, 2007: Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18 866–18 870,  https://doi.org/10.1073/pnas.0702737104.Google Scholar
  17. Chen, S. T., J. W. Zou, Z. H. Hu, H. S. Chen, and Y. Y. Lu, 2014: Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and Forest Meteorology, 198-199, 335–346,  https://doi.org/10.1016/j.agrformet.2014.08.020.Google Scholar
  18. Chen, Z., and Coauthors, 2013: Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agricultural and Forest Meteorology, 182-183, 266–276,  https://doi.org/10.1016/j.agrformet.2013.04.026.Google Scholar
  19. Chen, Z., G. R. Yu, X. J. Zhu, Q. F. Wang, S. L. Niu, and Z. M. Hu, 2015: Covariation between gross primary production and ecosystem respiration across space and the underlying mechanisms: A global synthesis. Agricultural and Forest Meteorology, 203, 180–190,  https://doi.org/10.1016/j.agrformet.2015.01.012.Google Scholar
  20. Chen, Z., G. R. Yu, and Q. F. Wang, 2019: Magnitude, pattern and controls of carbon flux and carbon use efficiency in China's typical forests. Global and Planetary Change, 172, 464–473,  https://doi.org/10.1016/j.gloplacha.2018.11.004.Google Scholar
  21. Davidson, E. A., L. V. Verchot, J. Henrique Cattânio, I. L. Ackerman, and J. E. M. Carvalho, 2000: Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia. Biogeochemistry, 48, 53–69,  https://doi.org/10.1023/A:1006204113917.Google Scholar
  22. de Dios, V. R., and Coauthors, 2012: Endogenous circadian regulation of carbon dioxide exchange in terrestrial ecosystems. Global Change Biology, 18(6), 1956–1970,  https://doi.org/10.1111/J.1365-2486.2012.02664.x.Google Scholar
  23. Exbrayat, J.-F., A. J. Pitman, Q. Zhang, G. Abramowitz, and Y.-P. Wang, 2013: Examining soil carbon uncertainty in a global model: response of microbial decomposition to temperature, moisture and nutrient limitation. Biogeosciences, 10(11), 7095–7108,  https://doi.org/10.5194/bg-10-7095-2013.Google Scholar
  24. Flanagan, L. B., and B. G. Johnson, 2005: Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and Forest Meteorology, 130(3–4), 237–253,  https://doi.org/10.1016/j.agrformet.2005.04.002.Google Scholar
  25. Flanagan, L. B., L. A. Wever, and P. J. Carlson, 2002: Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland. Global Change Biology, 8(7), 599–615,  https://doi.org/10.1046/j.1365-2486.2002.00491.x.Google Scholar
  26. Friedlingstein, P., and Coauthors, 2006: Climate-carbon cycle feedback analysis: Results from the C4MIP model intercom-parison. J. Climate, 19, 3337–3353,  https://doi.org/10.1175/JCLI3800.1.Google Scholar
  27. Hao, Y. B., X. Y. Cui, Y. F. Wang, X. R. Mei, X. M. Kang, N. Wu, P. Luo, and D. Zhu, 2011: Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of southwest China. Wetlands, 31, 413–422,  https://doi.org/10.1007/s13157-011-0151-1.Google Scholar
  28. Hirano, T., H. Segah, T. Harada, S. Limin, T. June, R. Hirata, and M. Osaki, 2007: Carbon dioxide balance of a tropical peat swamp forest in Kalimantan, Indonesia. Global Change Biology, 13(2), 412–425,  https://doi.org/10.1111/j.1365-2486.2006.01301.x.Google Scholar
  29. Houghton, R. A., 2007: Balancing the global carbon budget. Annual Review of Earth and Planetary Sciences, 35, 313–347,  https://doi.org/10.1146/annurev.earth.35.031306.140057.Google Scholar
  30. Hursh, A., A. Ballantyne, L. Cooper, M. Maneta, J. Kimball, and J. Watts, 2017: The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology, 23, 2090–2103,  https://doi.org/10.1111/gcb.13489.Google Scholar
  31. IPCC (Intergovernmental Panel on Climate Change), 2013: Climate Change 2013: The Physical Science. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker et al., eds., Cambridge University Press, Cambridge, UK, 130–194, 1257–1258.Google Scholar
  32. Janssen, P. H. M., and P. S. C. Heuberger, 1995: Calibration of process-oriented models. Ecological Modelling, 83(1-2), 55–66,  https://doi.org/10.1016/0304-3800(95)00084-9.Google Scholar
  33. Janssens, I. A., and Coauthors, 2001: Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology, 7(3), 269–278,  https://doi.org/10.1046/j.1365-2486.2001.00412.x.Google Scholar
  34. Jung, M., and Coauthors, 2011: Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res., 116(G3), G00J07,  https://doi.org/10.1029/2010JG001566.Google Scholar
  35. Jung, M., and Coauthors, 2017: Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541(7638), 516–520,  https://doi.org/10.1038/nature20780.Google Scholar
  36. Kato, T., and Y. H. Tang, 2008: Spatial variability and major controlling factors of CO2 sink strength in Asian terrestrial ecosystems: Evidence from eddy covariance data. Global Change Biology, 14(10), 2333–2348,  https://doi.org/10.1111/J.1365-2486.2008.01646.x.Google Scholar
  37. Keenan, T. F., D. Y. Hollinger, G. Bohrer, D. Dragoni, J. W. Munger, H. P. Schmid, and A. D. Richardson, 2013: Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature, 499(7458), 324–327,  https://doi.org/10.1038/nature12291.Google Scholar
  38. Knox, S. H., C. Sturtevant, J. H. Matthes, L. Koteen, J. Verfaillie, and D. Baldocchi, 2015: Agricultural peatland restoration: effects of land-use change on greenhouse gas (CO2 and CH4) fluxes in the Sacramento-San Joaquin Delta. Global Change Biology, 21(2), 750–765,  https://doi.org/10.1111/gcb.12745.Google Scholar
  39. Larsen, K. S., A. Ibrom, C. Beier, S. Jonasson, and A. Michelsen, 2007: Ecosystem respiration depends strongly on photosynthesis in a temperate heath. Biogeochemistry, 85(2), 201–213,  https://doi.org/10.1007/s10533-007-9129-8.Google Scholar
  40. Lasslop, G., M. Reichstein, D. Papale, A. D. Richardson, A. Arneth, A. Barr, P. Stoy, and G. Wohlfahrt, 2010: Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16(1), 187–208,  https://doi.org/10.1111/j.1365-2486.2009.02041.x.Google Scholar
  41. Law, B. E., P. E. Thornton, J. Irvine, P. M. Anthoni, and S. Van Tuyl, 2001: Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biology, 7(7), 755–777,  https://doi.org/10.1046/j.1354-1013.2001.00439.x.Google Scholar
  42. Law, B. E., and Coauthors, 2002: Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113(1-4), 97–120,  https://doi.org/10.1016/S0168-1923(02)00104-1.Google Scholar
  43. Liu, B. H., M. Henderson, Y. D. Zhang, and M. Xu, 2010: Spatiotemporal change in China's climatic growing season: 1955–2000. Climatic Change, 99(1-2), 93–118,  https://doi.org/10.1007/sl0584-009-9662-7.Google Scholar
  44. Lloyd, J., and J. A. Taylor, 1994: On the temperature dependence of soil respiration. Functional Ecology, 8, 315–323,  https://doi.org/10.2307/2389824.Google Scholar
  45. Lu, W. Z., J. F. Xiao, F. Liu, Y. Zhang, C. A. Liu, and G. H. Lin, 2017: Contrasting ecosystem CO2 fluxes of inland and coastal wetlands: A meta-analysis of eddy covariance data. Global Change Biology, 23(3), 1180–1198,  https://doi.org/10.1111/gcb.13424.Google Scholar
  46. Luyssaert, S., and Coauthors, 2007: CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), 2509–2537,  https://doi.org/10.1111/j.1365-2486.2007.01439.x.Google Scholar
  47. Mahecha, M. D., and Coauthors, 2010: Global convergence in the temperature sensitivity of respiration at ecosystem level. Science, 329(5993), 838–840,  https://doi.org/10.1126/science.1189587.Google Scholar
  48. Massman, W. J., and X. Lee, 2002: Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113, 121–144,  https://doi.org/10.1016/S0168-1923(02)00105-3.Google Scholar
  49. McGuire, A. D., and Coauthors, 2000: Modeling the effects of snowpack on heterotrophic respiration across northern temperate and high latitude regions: Comparison with measurements of atmospheric carbon dioxide in high latitudes. Bio geochemistry, 48, 91–114,  https://doi.org/10.1023/A:1006286804351.Google Scholar
  50. Migliavacca, M., and Coauthors, 2011: Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites. Global Change Biology, 17(1), 390–409,  https://doi.org/10.1111/j.1365-2486.2010.02243.x.Google Scholar
  51. Ngeticha, K. F., M. Mucheru-Muna, J. N. Mugwe, C. A. Shisanya, J. Diels, D. N. Mugendi, 2014: Length of growing season, rainfall temporal distribution, onset and cessation dates in the Kenyan highlands. Agricultural and Forest Meteorology, 188, 24–32,  https://doi.org/10.1016/j.agrformet.2013.12.011.Google Scholar
  52. Nishimura, S., S. Yonemura, T. Sawamoto, Y. Shirato, H. Akiyama, S. Sudo, and K. Yagi, 2008: Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agriculture, Ecosystems & Environment, 125, 9–20,  https://doi.org/10.1016/j.agee.2007.11.003.Google Scholar
  53. Petrescu, A. M. R., and Coauthors, 2015: The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4594–4599,  https://doi.org/10.1073/pnas.1416267112.Google Scholar
  54. Raich, J. W., C. S. Potter, and D. Bhagawati, 2002: Interannual variability in global soil respiration, 1980–94. Global Change Biology, 8(8), 800–812.  https://doi.org/10.1046/j.1365-2486.2002.00511.x.Google Scholar
  55. Reichstein, M., and Coauthors, 2003: Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles, 17(3), 1104,  https://doi.org/10.1029/2003GB002035.Google Scholar
  56. Reichstein, M., and Coauthors, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11(9), 1424–1439,  https://doi.org/10.1111/j.1365-2486.2005.001002.x.Google Scholar
  57. Reichstein, M., and Coauthors, 2007: Determinants of terrestrial ecosystem carbon balance inferred from European eddy covariance flux sites. Geophys. Res. Lett., 34, L01402,  https://doi.org/10.1029/2006GL027880.Google Scholar
  58. Reichstein, M., and Coauthors, 2013: Climate extremes and the carbon cycle. Nature, 500(7462), 287–295,  https://doi.org/10.1038/nature142350.Google Scholar
  59. Restrepo-Coupe, N., and Coauthors, 2013: What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agricultural and Forest Meteorology, 182-183, 128–144,  https://doi.org/10.1016/j.agrformet.2013.04.031.Google Scholar
  60. Richardson, A. D., D. Y. Hollinger, J. D. Aber, S. V. Ollinger, and B. H. Braswell, 2007: Environmental variation is directly responsible for short- but not long-term variation in forest-atmosphere carbon exchange. Global Change Biology, 13(3), 788–803,  https://doi.org/10.1111/j.1365-2486.2007.01330.x.Google Scholar
  61. Rubel, F., and M. Kottek, 2010: Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteor. Z., 19(2), 135–141,  https://doi.org/10.1127/0941-2948/2010/0430.Google Scholar
  62. Saigusa, N., T. Oikawa, and S. Liu, 1998: Seasonal variations of the exchange of CO2 and H2O between a grassland and the atmosphere: An experimental study. Agricultural and Forest Meteorology, 89(2), 131–139,  https://doi.org/10.1016/S0168-1923(97)00060-9.Google Scholar
  63. Saitoh, T. M., T. Kumagai, Y. Sato, and M. Suzuki, 2005: Carbon dioxide exchange over a Bornean tropical rainforest. J. Agric. Meteor., 60, 553–556.Google Scholar
  64. Schmitt, M., M. Bahn, G. Wohlfahrt, U. Tappeiner, and A. Cernusca, 2010: Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands. Biogeosciences, 7(8), 2297–2309,  https://doi.org/10.5194/bg-7-2297-2010.Google Scholar
  65. Shao, J. J., and Coauthors, 2015: Biotic and climatic controls on interannual variability in carbon fluxes across terrestrial ecosystems. Agricultural and Forest Meteorology, 205, 11–22,  https://doi.org/10.1016/j.agrformet.2015.02.007.Google Scholar
  66. Stoy, P. C., and Coauthors, 2009: Biosphere-atmosphere exchange of CO2 in relation to climate: a cross-biome analysis across multiple time scales. Biogeosciences, 6(10), 2297–2312,  https://doi.org/10.5194/bg-6-2297-2009.Google Scholar
  67. Tappeiner, U., and A. Cernusca, 1996: Microclimate and fluxes of water vapour, sensible heat and carbon dioxide in structurally differing subalpine plant communities in the Central Caucasus. Plant, Cell & Environment, 19(3), 403–417,  https://doi.org/10.1111/j.1365-3040.1996.tb00332.x.Google Scholar
  68. Trumbore, S., 2006. Carbon respired by terrestrial ecosystems — recent progress and challenges. Global Change Biology, 12(2), 141–153,  https://doi.org/10.1111/j.1365-2486.2006.01067.x.Google Scholar
  69. Turetsky, M. R., and Coauthors, 2014: A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20(7), 2183–2197,  https://doi.org/10.1111/gcb.12580.Google Scholar
  70. Valentini, R., and Coauthors, 2000: Respiration as the main determinant of carbon balance in European forests. Nature, 404(6780), 861–865,  https://doi.org/10.1038/35009084.Google Scholar
  71. Wang, X. C., C. K. Wang, and B. Bond-Lamberty, 2017: Quantifying and reducing the differences in forest CO2-fluxes estimated by eddy covariance, biometric and chamber methods: A global synthesis. Agricultural and Forest Meteorology, 247, 93–103,  https://doi.org/10.1016/j.agrformet.2017.07.023.Google Scholar
  72. Wang, Y. P., C. M. Trudinger, and I. G. Enting, 2009: A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales. Agricultural and Forest Meteorology, 149(11), 1829–1842,  https://doi.org/10.1016/j.agrformet.2009.07.009.Google Scholar
  73. Wu, J., and Coauthors, 2016: Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science, 351(6276), 972–976,  https://doi.org/10.1126/science.aad5068.Google Scholar
  74. Xiao, J. F., and Coauthors, 2013: Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agricultural and Forest Meteorology, 182-183, 76–90,  https://doi.org/10.1016/j.agrformet.2013.08.007.Google Scholar
  75. Xu, B., Y. H. Yang, P. Li, H. H. Shen, and J. Y. Fang, 2014: Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis. Global Biogeochemical Cycles, 28(9), 962–973,  https://doi.org/10.1002/2013GB004593.Google Scholar
  76. Yi, C. X., and Coauthors, 2010: Climate control of terrestrial carbon exchange across biomes and continents. Environmental Research Letters, 5, 031007,  https://doi.org/10.1088/1748-9326/5/3/034007.Google Scholar
  77. Yu, G. R., and Coauthors, 2013: Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19(3), 798–810,  https://doi.org/10.1111/gcb.12079.Google Scholar
  78. Yuan, W. P., and Coauthors, 2009: Latitudinal patterns of magnitude and interannual variability in net ecosystem exchange regulated by biological and environmental variables. Global Change Biology, 15(12), 2905–2920,  https://doi.org/10.1111/j.1365-2486.2009.01870.x.Google Scholar
  79. Zhang, X. Z., and Coauthors, 2018: Dominant regions and drivers of the variability of the global land carbon sink across timescales. Global Change Biology, 24(9), 3954–3968,  https://doi.org/10.1111/gcb.14275.Google Scholar

Copyright information

© Institute of Atmospheric Physics/Chinese Academy of Sciences, and Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shutao Chen
    • 1
    Email author
  • Jianwen Zou
    • 2
  • Zhenghua Hu
    • 3
  • Yanyu Lu
    • 4
  1. 1.Jiangsu Key Laboratory of Agricultural MeteorologyNanjing University of Information Science and TechnologyNanjingChina
  2. 2.College of Resources and Environmental SciencesNanjing Agricultural UniversityNanjingChina
  3. 3.School of Applied MeteorologyNanjing University of Information Science and TechnologyNanjingChina
  4. 4.Climate Center, Anhui Weather BureauHefeiChina

Personalised recommendations