Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 4, pp 451–464 | Cite as

Surface Rainfall Processes during the Genesis Period of Tropical Cyclone Durian (2001)

  • Yaping Wang
  • Yongjie Huang
  • Xiaopeng CuiEmail author
Original Paper
  • 4 Downloads

Abstract

The rainfall processes during the formation of tropical cyclone (TC) Durian (2001) were investigated quantitatively using the three-dimensional (3D) WRF-based precipitation equation. The rain rate (PS) decreased slightly as the TC approached to formation, and then increased as Durian began to intensify. The rate of moisture-related processes (QWV) in the equation contributed around 80% to PS before TC genesis, and made more contribution during and after TC genesis. The rate of hydrometeor-related processes (QCM) contributed about 20% before TC formation, followed by less contribution during and after TC formation. QWV were dominated by the 3D moisture flux advection rate (QWVA), while the surface evaporation rate (QWVE) also played an important role. Just before TC genesis, moisture from QWVA and QWVE helped the local atmosphere moisten (negative QWVL). QCM were determined by the 3D hydrometeor advection rates (QCLA and QCIA) and the local change rates of hydrometeors (QCLL and QCIL). During TC formation, QCM largely decreased and then reactivated as Durian began to intensify, accompanied by the development of TC cloud. Both the height and the strength of the net latent heating center associated with microphysical processes generally lowered before and during TC genesis, resulting mainly from lessening deposition and condensation. The downward shift of the net latent heating center induced a more bottom-heavy upward mass flux profile, suggesting to promote lower-tropospheric convergence in a shallower layer, vorticity amplification and TC spin-up.

Key words

surface rainfall processes tropical cyclone formation three-dimensional precipitation equation latent heating 

摘要

本文利用基于 WRF 模式的三维降水方程, 定量研究了热带气旋(tropical cyclone, 简称 TC)“榴莲”(2001)生成期间的降水过程. 研究表明, 当 TC“榴莲”趋近于生成时, 降水率(PS)有所减小, 当 TC生成后开始加强时, 降水率逐渐增大. 降水方程中的水汽相关过程贡献了约 80%的 TC生成前降水, 对 TC 生成后的降水贡献则更大; 而降水方程中的云水凝物相关过程贡献了约 20%的 TC 生成前降水, 对 TC 生成后的降水贡献则更小. 其中, 水汽相关过程由三维水汽通量平流项(QWVA)主导, 同时, 海表蒸发项(QWVE)也起到重要作用. 在 TC 生成前, 由QWVAQWVE 带来的水汽还起到增湿局地大气的作用. 云相关过程主要由三维云水凝物的平流项(QCLA, QCIA)和水凝物局地变化率来决定(QCLL, QCIL). 在 TC 生成期间, 云相关过程对降水的贡献率先显著减小, 接着随着“榴莲”的加强而有所增大, 伴随着 TC 云系的发展. 此外, 与云微物理转化过程相联系的净潜热加热率中心的高度和强度在 TC 生成过程中分别呈现降低和减弱的趋势, 这主要是由云微物理过程中的凝华和凝结过程减少所引起的. 净潜热加热率中心的向下转移引起了向上质量通量廓线中心的下移, 该变化有利于低层大气在近地面的辐合, 涡度的增长和 TC 的自旋发展.

关键词

地面降水过程 热带气旋生成 三维降水方程 潜热加热 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Yaping WANG and Xiaopeng CUI are supported by the National Basic Research (973) Program of China (Grant No. 2015CB452804).

References

  1. Bao, J. W., S. A. Michelson, and E. D. Grell, 2016: Pathways to the production of precipitating hydrometeors and tropical cyclone development. Mon. Wea. Rev., 144, 2395–2420,  https://doi.org/10.1175/MWR-D-15-0363.1.Google Scholar
  2. Braun, S. A., 2006: High-resolution simulation of Hurricane Bonnie (1998). Part II: Water budget. J. Atmos. Sci., 63, 43–64,  https://doi.org/10.1175/JAS3609.1.Google Scholar
  3. Cecelski, S. F., and D. L. Zhang, 2016: Genesis of Hurricane Julia (2010) within an African easterly wave: Sensitivity to ice microphysics. Journal of Applied Meteorology and Climatology, 55, 79–92,  https://doi.org/10.1175/JAMC-D-15-0105.1.Google Scholar
  4. Chen, S. M., Y. K. Qian, and S. Q. Peng, 2015: Effects of various combinations of boundary layer schemes and microphysics schemes on the track forecasts of tropical cyclones over the South China Sea. Natural Hazards, 78, 61–74,  https://doi.org/10.1007/s11069-015-1697-7.Google Scholar
  5. Cui, X. P., 2008: A cloud-resolving modeling study of diurnal variations of tropical convective and stratiform rainfall. J. Geophys. Res., 113, D2,  https://doi.org/10.1029/2007JD008990.Google Scholar
  6. Cui, X. P., 2009: Quantitative diagnostic analysis of surface rainfall processes by surface rainfall equation. Chinese Journal of Atmospheric Sciences, 33, 375–387,  https://doi.org/10.3878/j.issn.1006-9895.2009.02.15. (in Chinese)Google Scholar
  7. Cui, X. P., and X. F. Li, 2006: Role of surface evaporation in surface rainfall processes. J. Geophys. Res., 111, D17,  https://doi.org/10.1029/2005JD006876.Google Scholar
  8. Cui, X. P., and X. F. Li, 2009: Diurnal responses of tropical convective and stratiform rainfall to diurnally varying sea surface temperature. Meteor. Atmos. Phys., 104, 53–61,  https://doi.org/10.1007/s00703-008-0016-1.Google Scholar
  9. Cui, X. P., and F. W. Xu, 2009: A cloud-resolving modeling study of surface rainfall processes associated with landfalling typhoon Kaemi (2006). Journal of Tropical Meteorology, 15, 181–191,  https://doi.org/10.3969/j.issn.1006-8775.2009.02.007.Google Scholar
  10. Cui, X. P., and X. F. Li, 2011: A cloud-resolving modeling study of short-term surface rainfall processes. Meteor. Atmos. Phys., 111, 1–11,  https://doi.org/10.1007/s00703-010-0121-9.Google Scholar
  11. Cui, X. P., Y. Zhou, and X. F. Li, 2007: Cloud microphysical properties in tropical convective and stratiform regions. Meteor. Atmos. Phys., 98, 1–11,  https://doi.org/10.1007/s00703-006-0228-1.Google Scholar
  12. Dunkerton, T. J., M. T. Montgomery, and Z. Wang, 2009: Tropical cyclogenesis in a tropical wave critical layer: Easterly waves. Atmos. Chem. Phys., 9, 5587–5646,  https://doi.org/10.5194/acp-9-5587-2009.Google Scholar
  13. Fritz, C., and Z. Wang, 2014: Water vapor budget in a developing tropical cyclone and its implication for tropical cyclone formation. J. Atmos. Sci., 71, 4321–4332,  https://doi.org/10.1175/JAS-D-13-0378.1.Google Scholar
  14. Gao, S. T., and X. F. Li, 2010: Precipitation equations and their applications to the analysis of diurnal variation of tropical oceanic rainfall. J. Geophys. Res., 115,  https://doi.org/10.1029/2009JD012452.Google Scholar
  15. Gao, S. T., X. P. Cui, Y. S. Zhou, and X. F. Li, 2005: Surface rainfall processes as simulated in a cloud-resolving model. J. Geophys. Res., 110,  https://doi.org/10.1029/2004JD005467.Google Scholar
  16. Gao, S. T., X. P. Cui, and X. F. Li, 2009: A modeling study of diurnal rainfall variations during the 21-day period of TOGA COARE. Adv. Atmos. Sci., 26(5), 895–905,  https://doi.org/10.1007/s00376-009-8123-6.Google Scholar
  17. Gjorgjievska, S., and D. J. Raymond, 2014: Interaction between dynamics and thermodynamics during tropical cyclogenesis. Atmos. Chem. Phys., 14, 3065–3082,  https://doi.org/10.5194/acp-14-3065-2014.Google Scholar
  18. Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341,  https://doi.org/10.1175/MWR3199.1.Google Scholar
  19. Huang, H. L., M. J. Yang, and C. H. Sui, 2014: Water budget and precipitation efficiency of Typhoon Morakot (2009). J. Atmos. Sci., 71, 112–129,  https://doi.org/10.1175/JAS-D-13-053.1.Google Scholar
  20. Huang, Y. J., X. P. Cui, and X. F. Li, 2016: A three-dimensional WRF-based precipitation equation and its application in the analysis of roles of surface evaporation in a torrential rainfall event. Atmos. Res., 169, 54–64,  https://doi.org/10.1016/j.atmosres.2015.09.026.Google Scholar
  21. Jin, Y., and Coauthors, 2014: The impact of ice phase cloud parameterizations on tropical cyclone prediction. Mon. Wea. Rev., 142, 606–625,  https://doi.org/10.1175/MWR-D-13-00058.1.Google Scholar
  22. Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503,  https://doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.Google Scholar
  23. Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181,  https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.Google Scholar
  24. Li, X., 2006: Cloud microphysical and precipitation responses to a large-scale forcing in the tropical deep convective regime. Meteor. Atmos. Phys., 94, 87–102,  https://doi.org/10.1007/s00703-005-0172-5.Google Scholar
  25. Li, X. T., and S. F. Gao, 2016: Cloud-Resolving Modeling of Convective Processes. 2nd ed., Springer, 57–68.Google Scholar
  26. Li, X. F., X. Y. Shen, and J. Liu, 2011: A partitioning analysis of tropical rainfall based on cloud budget. Atmos. Res., 102, 444–451,  https://doi.org/10.1016/j.atmosres.2011.09.010.Google Scholar
  27. Liao, F., Y. C. Hong, and G. G. Zheng, 2006: Research reviews of dynamic, thermodynamic and microphysical factors affecting cloud and precipitation. Meteorological Monthly, 32, 3–11,  https://doi.org/10.3969/j.issn.1000-0526.2006.11.001. (in Chinese with English abstract)Google Scholar
  28. Liu, S. N., and X. P. Cui, 2018: Diagnostic analysis of rate and efficiency of torrential rainfall associated with Bilis (2006). Chinese Journal of Atmospheric Sciences, 42, 192–208,  https://doi.org/10.3878/j.issn.1006-9895.1704.17148. (in Chinese)Google Scholar
  29. McFarquhar, G. M., H. N. Zhang, G. Heymsfield, J. B. Halverson, R. Hood, J. Dudhia, and F. Marks, 2006: Factors affecting the evolution of Hurricane Erin (2001) and the distributions of hydrometeors: Role of microphysical processes. J. Atmos. Sci., 63, 127–150,  https://doi.org/10.1175/JAS3590.1.Google Scholar
  30. Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386,  https://doi.org/10.1175/JAS3604.1.Google Scholar
  31. Pan, Y., J. J. Yu, J. Liao, and Y. Yu, 2011: Assessment on the rainfall monitoring of Typhoon Morakot by groundgauged and satellite precipitation product. Meteorological Monthly, 37, 564–570,  https://doi.org/10.7519/j.issn.1000-0526.2011.5.007. (in Chinese)Google Scholar
  32. Ping, F., Z. X. Luo, and X. F. Li, 2007: Microphysical and radiative effects of ice clouds on tropical equilibrium states: A two-dimensional cloud-resolving Modeling study. Mon. Wea. Rev., 135, 2794–2802,  https://doi.org/10.1175/MWR3419.1.Google Scholar
  33. Ping, F., Z. X. Luo, and X. F. Li, 2008: Kinematics, cloud microphysics and spatial structures of tropical cloud clusters: A two-dimensional cloud-resolving modeling study. Atmos. Res., 88, 323–336,  https://doi.org/10.1016/j.atmosres.2007.11.027.Google Scholar
  34. Raymond, D. J., 2012: Balanced thermal structure of an intensifying tropical cyclone. Tellus A, 64, 19181,  https://doi.org/10.3402/tellusa.v64i0.19181.Google Scholar
  35. Raymond, D. J., and S. L. Sessions, 2007: Evolution of convection during tropical cyclogenesis. Geophys. Res. Lett., 34, L06811,  https://doi.org/10.1029/2006GL028607.Google Scholar
  36. Raymond, D. J., and C. López-Carrillo, 2011: The vorticity budget of developing typhoon Nuri (2008). Atmos. Chem. Phys., 11, 147–163,  https://doi.org/10.5194/acp-11-147-2011.Google Scholar
  37. Raymond, D. J., S. L. Sessions, and C. López-Carrillo, 2011: Thermodynamics of tropical cyclogenesis in the northwest Pacific. J. Geophys. Res, 116,  https://doi.org/10.1029/2011JD015624.Google Scholar
  38. Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. Journal of Hydrometeorology, 10, 149–166,  https://doi.org/10.1175/2008JHM1052.1.Google Scholar
  39. Shen, X. Y., Y. Wang, and X. F. Li, 2011a: Effects of vertical wind shear and cloud radiative processes on responses of rainfall to the large-scale forcing during pre-summer heavy rainfall over southern China. Quart. J. Roy. Meteor. Soc., 137, 236–249,  https://doi.org/10.1002/qj.735.Google Scholar
  40. Shen, X. Y., Y. Wang, and X. F. Li, 2011b: Radiative effects of water clouds on rainfall responses to the large-scale forcing during pre-summer heavy rainfall over southern China. Atmos. Res., 99, 120–128,  https://doi.org/10.1016/j.atmosres.2010.09.011.Google Scholar
  41. Shen, X. Y., N. Zhang, and X. F. Li, 2011c: Effects of large-scale forcing and ice clouds on pre-summer heavy rainfall over southern China in June 2008: A partitioning analysis based on surface rainfall budget. Atmos. Res., 101, 155–163,  https://doi.org/10.1016/j.atmosres.2011.02.001.Google Scholar
  42. Skamarock, W. C., and Coauthors, 2008: A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR, 113 pp,  https://doi.org/10.5065/D68S4MVH.Google Scholar
  43. Tao, W. K., J. Simpson, and M. McCumber, 1989: An icewater saturation adjustment. Mon. Wea. Rev., 117, 231–235,  https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2.Google Scholar
  44. Wang, D. H., X. F. Li, W. K. Tao, Y. Liu, and H. G. Zhou, 2009: Torrential rainfall processes associated with a landfall of severe tropical storm Bilis (2006): A two-dimensional cloudresolving modeling study. Atmos. Res., 91, 94–104,  https://doi.org/10.1016/j.atmosres.2008.07.005.Google Scholar
  45. Wang, D. H., X. F. Li, and W. K. Tao, 2010a: Torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis (2006). Meteor. Atmos. Phys., 109, 107–114,  https://doi.org/10.1007/s00703-010-0097-5.Google Scholar
  46. Wang, J. J., X. F. Li, and L. D. Carey, 2007: Evolution, structure, cloud microphysical, and surface rainfall processes of monsoon convection during the South China Sea Monsoon Experiment. J. Atmos. Sci., 64, 360–380,  https://doi.org/10.1175/JAS3852.1.Google Scholar
  47. Wang, X. H., X. P. Cui, and S. F. Hao, 2018b: Diagnostic and numerical study on surface rainfall processes of tropical cyclone Soudelor (2015) over sea. Chinese Journal of Atmospheric Sciences,  https://doi.org/10.3878/j.issn.1006-9895.1804.18118. (in press, in Chinese)Google Scholar
  48. Wang, Y. P., X. P. Cui, X. F. Li, W. L. Zhang, and Y. J. Huang, 2016a: Kinetic energy budget during the genesis period of tropical cyclone Durian (2001) in the South China Sea. Mon. Wea. Rev., 144, 2831–2854,  https://doi.org/10.1175/MWRD-15-0042.1.Google Scholar
  49. Wang, Y. P., X. P. Cui, and Y. J. Huang, 2016b: Characteristics of multiscale vortices in the simulated formation of Typhoon Durian (2001). Atmospheric Science Letters, 17, 492–500.  https://doi.org/10.1002/asl.683.Google Scholar
  50. Wang, Y. P., Y. J. Huang, and X. P. Cui, 2018a: Impact of mid- and upper-level dry air on tropical cyclone genesis and intensification: A modeling study of Durian (2001). Adv. Atmos. Sci., 35, 1505–1521,  https://doi.org/10.1007/s00376-018-8039-0.Google Scholar
  51. Wang, Y. Q., 2002: An explicit simulation of tropical cyclones with a triply nested movable mesh primitive equation model: TCM3. Part II: Model refinements and sensitivity to cloud microphysics parameterization. Mon. Wea. Rev., 130, 3022–3036,  https://doi.org/10.1175/1520-0493(2002)130<3022:AESOTC>2.0.CO;2.Google Scholar
  52. Wang, Z., and I. Hankes, 2016: Moisture and precipitation evolution during tropical cyclone formation as revealed by the SSM/I–SSMIS retrievals. J. Atmos. Sci., 73, 2773–2781,  https://doi.org/10.1175/JAS-D-15-0306.1.Google Scholar
  53. Wang, Z., M. T. Montgomery, and T. J. Dunkerton, 2010b: Genesis of pre-hurricane Felix (2007). Part II: Warm core formation, precipitation evolution, and predictability. J. Atmos. Sci., 67, 1730–1744,  https://doi.org/10.1175/2010JAS3435.1.Google Scholar
  54. Xu, H. Y., G. Q. Zhai, and X. F. Li, 2017: Precipitation efficiency and water budget of Typhoon Fitow (2013): A particle trajectory study. Journal of Hydrometeorology, 18, 2331–2354,  https://doi.org/10.1175/JHM-D-16-0273.1.Google Scholar
  55. Xu, X. F., F. W. Xu, and B. Li, 2007: A cloud-resolving modeling study of a torrential rainfall event over China. J. Geophys. Res., 112,  https://doi.org/10.1029/2006JD008275.Google Scholar
  56. Yang, M. J., S. A. Braun, and D. S. Chen, 2011: Water budget of Typhoon Nari (2001). Mon. Wea. Rev., 139, 3809–3828,  https://doi.org/10.1175/MWR-D-10-05090.1.Google Scholar
  57. Yu, Z. F., H. Yu, P. Y. Chen, C. H. Qian, and C. J. Yue, 2009: Verification of tropical cyclone–related satellite precipitation estimates in mainland China. Journal of Applied Meteorology and Climatology, 48, 2227–2241,  https://doi.org/10.1175/2009JAMC2143.1.Google Scholar
  58. Yue, C. J., and S. W. Shou, 2011: Responses of precipitation to vertical wind shear, radiation, and ice clouds during the landfall of Typhoon Krosa (2007). Atmos. Res., 99, 344–352,  https://doi.org/10.1016/j.atmosres.2010.11.003.Google Scholar
  59. Yue, C. J., S. W. Shou, and X. F. Li, 2009: Water vapor, cloud, and surface rainfall budgets associated with the landfall of Typhoon Krosa (2007): A two-dimensional cloudresolving modeling study. Adv. Atmos. Sci., 26(6), 1198–1208,  https://doi.org/10.1007/s00376-009-8135-2.Google Scholar
  60. Zhang, W. L., X. P. Cui, A. S. Wang, and Z. P. Zong, 2008: Numerical simulation of hot towers during pre-genesis stage of Typhoon Durian (2001). Journal of Tropical Meteorology, 24, 619–628,  https://doi.org/10.3969/j.issn.1004-4965.2008.06.006. (in Chinese)Google Scholar
  61. Zhu, T., and D.-L. Zhang, 2006: Numerical simulation of Hurricane Bonnie (1998). Part II: Sensitivity to varying cloud microphysical processes. J. Atmos. Sci., 63, 109–126,  https://doi.org/10.1175/JAS3599.1.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Cloud-Precipitation Physics and Severe Storms (LACS), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations