Advertisement

Advances in Atmospheric Sciences

, Volume 36, Issue 4, pp 417–430 | Cite as

Intraseasonal Oscillation of Tropospheric Ozone over the Indian Summer Monsoon Region

  • Yuli Zhang
  • Chuanxi LiuEmail author
  • Yi Liu
  • Rui Yang
Original Paper
  • 8 Downloads

Abstract

Boreal summer intraseasonal oscillation (BSISO) of lower tropospheric ozone is observed in the Indian summer monsoon (ISM) region on the basis of ERA-Interim reanalysis data and ozonesonde data from the World Ozone and Ultraviolet Radiation Data Centre. The 30–60-day intraseasonal variation of lower-tropospheric ozone shows a northwest–southeast pattern with northeastward propagation in the ISM region. The most significant ozone variations are observed in the Maritime Continent and western North Pacific. In the tropics, ozone anomalies extend from the surface to 300 hPa; however, in extratropical areas, it is mainly observed under 500 hPa. Precipitation caused by BSISO plays a dominant role in modulating the BSISO of lower-tropospheric ozone in the tropics, causing negative/positive ozone anomalies in phases 1–3/5–6. As the BSISO propagates northeastward to the western North Pacific, horizontal transport becomes relatively more important, increasing/reducing tropospheric ozone via anticyclonic/cyclonic anomalies over the western North Pacific in phases 3–4/7–8.

As two extreme conditions of the ISM, most of its active/break events occur in BSISO phases 4–7/1–8 when suppressed/enhanced convection appears over the equatorial eastern Indian Ocean and enhanced/suppressed convection appears over India, the Bay of Bengal, and the South China Sea. As a result, the BSISO of tropospheric ozone shows significant positive/negative anomalies over the Maritime Continent, as well as negative/positive anomalies over India, the Bay of Bengal, and the South China Sea in active/break spells of the ISM. This BSISO of tropospheric ozone is more remarkable in break spells than in active spells of the ISM, due to the stronger amplitude of BSISO in the former.

Key words

boreal summer intraseasonal oscillation tropospheric ozone Indian summer monsoon active/break spell 

摘 要

本文利用ERA再分析资料和WOUDC臭氧探空资料, 分析了印度季风区夏季对流层臭氧的季节内振荡(BSISO)特征. 结果表明对流层低层臭氧存在着30-60天的季节内振荡, 臭氧异常呈西北-东南向分布, 在季风区向东北方向传播. 最显著的臭氧异常在海洋大陆和西北太平洋区域. 臭氧异常在热带从地面延伸到300hPa, 而在热带外地区臭氧异常主要在500hPa以下. 在热带, BSISO引起的降水是导致臭氧异常的主要原因, 使得在1-3/5-6位相出现了臭氧负/正异常. 然而当BSISO传播到西北太平洋区域时, BSISO引起的大气环流异常对臭氧异常的形成更为重要, 通过反气旋性/气旋性环流异常导致了臭氧在3-4/7-8出现正/负异常. 大多数印度季风的活跃/中断发生在BSISO的4-7/1-8位相, 此时减弱/加强的对流出现在赤道东印度洋, 加强/减弱的对流出现在印度, 孟加拉湾和中国南海. 海洋大陆对流层臭氧出现显著的负/正异常, 印度, 孟加拉湾和中国南海对流层臭氧出现显著的正/负异常. 由于季风中断期BSISO的振幅比季风活跃期更大, 对流层臭氧的季节内振荡也更加显著.

关键词

北半球夏季季节内振荡 对流层臭氧 印度季风 活跃/中断期 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We would like to acknowledge support from the World Meteorological Organization–Global Atmosphere Watch Program/WOUDC (https://doi.org/www.woudc.org/home.php) with respect to the ozonesonde dataset.

References

  1. Annamalai, H., and J. M. Slingo, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18, 85–102,  https://doi.org/10.1007/s003820100161.Google Scholar
  2. Annamalai, H., and K. R. Sperber, 2005: Regional heat sources and the active and break phases of boreal summer intraseasonal (30–50 day) variability. J. Atmos. Sci., 62, 2726–2748,  https://doi.org/10.1175/JAS3504.1.Google Scholar
  3. Bessafi, M., and M. C. Wheeler, 2006: Modulation of South Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively coupled equatorial waves. Mon. Wea. Rev., 134, 638–656,  https://doi.org/10.1175/MWR3087.1.Google Scholar
  4. Chan, J. C. L., W. Ai, and J. J. Xu, 2002: Mechanisms responsible for the maintenance of the 1998 South China Sea summer monsoon. J. Meteor. Soc. Japan, 80, 1103–1113.Google Scholar
  5. Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597,  https://doi.org/10.1002/qj.828.Google Scholar
  6. Ding, A. J., T. Wang, V. Thouret, J.-P. Cammas, and P. Nédélec, 2008: Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys., 8(1), 1–13,  https://doi.org/10.5194/acp-8-1-2008.Google Scholar
  7. Donald, A., H. Meinke, B. Power, A. de H. N. Maia, M. C. Wheeler, N. White, R. C. Stone, and J. Ribbe, 2006: Nearglobal impact of the Madden–Julian Oscillation on rainfall. Geophys. Res. Lett., 33, L09704,  https://doi.org/10.1029/2005GL025155.Google Scholar
  8. Dufour, G., M. Eremenko, J. Orphal, and J.-M. Flaud, 2010: IASI observations of seasonal and day-to-day variations of tropospheric ozone over three highly populated areas of China: Beijing, Shanghai, and Hong Kong. Atmos. Chem. Phys., 10(8), 3787–3801,  https://doi.org/10.5194/acp-10-3787-2010.Google Scholar
  9. Fadnavis, S., and R. Chattopadhyay, 2017: Linkages of subtropical stratospheric intraseasonal intrusions with Indian summer monsoon deficit rainfall. J. Climate, 30, 5083–5095,  https://doi.org/10.1175/JCLI-D-16-0463.1.Google Scholar
  10. Gao, X. H., and J. L. Stanford, 1990: Low-frequency oscillations in total ozone measurements. J. Geophys. Res., 95, 13 797–13 806,  https://doi.org/10.1029/JD095iD09p13797.Google Scholar
  11. Garfinkel, C. I., S. B. Feldstein, D. W. Waugh, C. Yoo, and S. Lee, 2012: Observed connection between stratospheric sudden warmings and the Madden–Julian Oscillation. Geophys. Res. Lett., 39, L18807,  https://doi.org/10.1029/2012GL053144.Google Scholar
  12. Han, R. Q., W. J. Li, and M. Dong, 2006: The impact of 30-60day oscillations over the subtropical Pacific on the East Asian summer rainfall. Acta Meteorologica Sinica, 20, 459–474.Google Scholar
  13. Kang, I. S., C. H. Ho, Y. K. Lim, and K. M. Lau, 1999: Principal modes of climatological seasonal and intraseasonal variations of the Asian summer monsoon. Mon. Wea. Rev., 127, 322–340,  https://doi.org/10.1175/1520-0493(1999)127<0322:PMOCSA>2.0.CO;2.Google Scholar
  14. Kikuchi, K., and B. Wang, 2010: Formation of tropical cyclones in the northern Indian Ocean associated with two types of tropical intraseasonal oscillation modes. J. Meteor. Soc. Japan, 88(3), 475–496,  https://doi.org/10.2151/jmsj.2010-313.Google Scholar
  15. Kikuchi, K., B. Wang, and Y. Kajikawa, 2012: Bimodal representation of the tropical intraseasonal oscillation. Climate Dyn., 38, 1989–2000,  https://doi.org/10.1007/s00382-011-1159-1.Google Scholar
  16. Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115, 1407–1436,  https://doi.org/10.1175/1520-0493(1987)115<1407:DAOCLC>2.0.CO;2.Google Scholar
  17. Kummerow, C., and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. Journal of Applied Meteorology and Climatology, 39, 1965–1982,  https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.Google Scholar
  18. Lau, K. M., and P. H. Chan, 1985: Aspects of the 40–50 day oscillation during the northern winter as inferred from outgoing Longwave radiation. Mon. Wea. Rev., 113, 1889–1909,  https://doi.org/10.1175/1520-0493(1985)113<1889:AOTDOD>2.0.CO;2.Google Scholar
  19. Lau, K. M., and P. H. Chan, 1986: Aspects of the 40–50 day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114, 1354–1367,  https://doi.org/10.1175/1520-0493(1986)114<1354:AOTDOD>2.0.CO;2.Google Scholar
  20. Lau, K. M., and T. J. Phillips, 1986: Coherent fluctuations of fxtratropical geopotential height and tropical convection in intraseasonal time scales. J. Atmos. Sci., 43, 1164–1181,  https://doi.org/10.1175/1520-0469(1986)043<1164:CFOFGH>2.0.CO;2.Google Scholar
  21. Lau, W. K. M., and D. E. Waliser, 2012: Intraseasonal Variability in the Atmosphere-ocean Climate System. 2nd ed. Springer, 581 pp.Google Scholar
  22. Lau, W. K. M., D. E. Waliser, and B. J. Tian, 2012: Chemical and biological impacts. Intraseasonal Variability in the Atmosphere-Ocean Climate System, W. K. M. Lau and D. E. Waliser, Eds., Springer-Verlag, 569–585,  https://doi.org/10.1007/978-3-642-13914-7.
  23. Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59, 1593–1606,  https://doi.org/10.1175/1520-0469(2002)059<1593:TBSIOR>2.0.CO;2.Google Scholar
  24. Lee, J., B. Wang, M. C. Wheeler, X. H. Fu, D. E. Waliser, and I. S. Kang, 2013: Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Climate Dyn., 40, 493–509,  https://doi.org/10.1007/s00382-012-1544-4.Google Scholar
  25. Li, C. Y., and J. B. Wu, 2000: On the onset of the South China Sea summer monsoon in 1998. Adv. Atmos. Sci., 17, 193–204,  https://doi.org/10.1007/s00376-000-0003-z.Google Scholar
  26. Li, K. F., B. Tian, D. E. Waliser, M. J. Schwartz, J. L. Neu, J. R. Worden, and Y. L. Yung, 2012: Vertical structure of MJO-related subtropical ozone variations from MLS, TES, and SHADOZ data. Atmos Chem Phys, 12, 425–436,  https://doi.org/10.5194/acp-12-425-2012.Google Scholar
  27. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bull. Amer. Meteor. Soc., 77, 1275–1277.Google Scholar
  28. Lin, M., T. Holloway, T. Oki, D. G. Streets, and A. Richter, 2009: Multi-scale model analysis of boundary layer ozone over East Asia. Atmos Chem Phys, 9, 3277–3301,  https://doi.org/10.5194/acp-9-3277-2009.Google Scholar
  29. Liu, C. X., Y. Liu, Z. N. Cai, S. T. Gao, D. R. Lü, and E. Kyrölä, 2009: A Madden-Julian Oscillation-triggered record ozone minimum over the Tibetan Plateau in December 2003 and its association with stratospheric “low-ozone pockets”. Geophys. Res. Lett., 36, L15830,  https://doi.org/10.1029/2009GL039025.Google Scholar
  30. Liu, C. X., Y. Liu, Z. N. Cai, S. T. Gao, J. C. Bian, and X. Liu, and K. Chance, 2010a: Dynamic formation of extreme ozone minimum events over the Tibetan Plateau during northern winters 1987–2001. J. Geophys. Res., 115, D18311,  https://doi.org/10.1029/2009JD013130.Google Scholar
  31. Liu, C. X., B. J. Tian, K. F. Li, G. L. Manney, N. J. Liversey, Y. L. Yung, and D. E. Waliser, 2014: Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation. J. Geophys. Res., 119, 12 599–12 620,  https://doi.org/10.1002/2014JD021876.Google Scholar
  32. Liu, C. X., Y. Liu, and Y. L. Zhang, 2015a: Simulation of the Madden-Julian Oscillation in wintertime stratospheric ozone over the Tibetan Plateau and East Asia: Results from the specified dynamics version of the Whole Atmosphere Community Climate Model. Atmospheric and Oceanic Science Letters, 8, 264–270,  https://doi.org/10.3878/AOSL20150020.Google Scholar
  33. Liu, H. Y., and Coauthors, 2002: Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations. J. Geophys. Res., 107, ACH 3–1–ACH 3–19,  https://doi.org/10.1029/2001JD002005.Google Scholar
  34. Liu, X., P. K. Bhartia, K. Chance, R. J. D. Spurr, and T. P. Kurosu, 2010b: Ozone profile retrievals from the Ozone Monitoring Instrument. Atmos. Chem. Phys., 10, 2521–2537,  https://doi.org/10.5194/acp-10-2521-2010.Google Scholar
  35. Liu, Y., Y. L. Zhang, Y. Wang, C. X. Liu, Z. N. Cai, P. Konopka, and R. Müller, 2015b: Dominant modes of tropospheric ozone variation over East Asia from GOME observations. Advances in Meteorology, 2015, Article ID 879578,  https://doi.org/10.1155/2015/879578.Google Scholar
  36. Lu, X., L. Zhang, X. Liu, M. Gao, Y. H. Zhao, and J. Y. Shao, 2018: Lower tropospheric ozone over India and its linkage to the South Asian monsoon. Atmos. Chem. Phys., 18, 3101–3188,  https://doi.org/10.5194/acp-18-3101-2018.Google Scholar
  37. Madden, R. A., 1986: Seasonal variations of the 40–50 day oscillation in the tropics. J. Atmos. Sci., 43, 3138–3158,  https://doi.org/10.1175/1520-0469(1986)043<3138:SVOTDO>2.0.CO;2.Google Scholar
  38. Madden, R. D., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702–708,  https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.Google Scholar
  39. Madden, R. D., and P. R. Julian, 1972: Description of global-Scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 1109–1123,  https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2.Google Scholar
  40. Madden, R. D., and P. R. Julian, 1994: Observations of the 40-50-day tropical oscillation—A review. Mon. Wea. Rev., 122, 814–837,  https://doi.org/10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.Google Scholar
  41. Matthews, A. J., B. J. Hoskins, and M. Masutani, 2004: The global response to tropical heating in the Madden–Julian oscillation during the northern winter. Quart. J. Roy. Meteor. Soc., 130, 1991–2011,  https://doi.org/10.1256/qj.02.123.Google Scholar
  42. Monks, P. S., and Coauthors, 2009: Atmospheric composition change - global and regional air quality. Atmos. Environ., 43, 5268–5350,  https://doi.org/10.1016/j.atmosenv.2009.08.021.Google Scholar
  43. Pohl, B., Y. Richard, and N. Fauchereau, 2007: Influence of the Madden–Julian oscillation on southern African summer rainfall. J. Climate, 20, 4227–4242,  https://doi.org/10.1175/JCLI4231.1.Google Scholar
  44. Pohl, B., N. Fauchereau, C. J. C. Reason, and M. Rouault, 2010: Relationships between the Antarctic oscillation, the Madden–Julian oscillation, and ENSO, and consequences for rainfall analysis. J. Climate, 23, 238–254,  https://doi.org/10.1175/2009JCLI2443.1.Google Scholar
  45. Raghavan, K., 1973: Break-monsoon over India. Mon. Wea. Rev., 101, 33–43,  https://doi.org/10.1175/1520-0493(1973)101<0033:BOI>2.3.CO;2.Google Scholar
  46. Rajeevan, M., S. Gadgil, and J. Bhate, 2010: Active and break spells of the Indian summer monsoon. Journal of Earth System Science, 119(3), 229–247,  https://doi.org/10.1007/s12040-010-0019-4.Google Scholar
  47. Sabutis, J. L., J. L. Stanford, and K. P. Bowman, 1987: Evidence for 35–50 day low frequency oscillations in total ozone mapping spectrometer data. Geophys. Res. Lett., 14, 945–947,  https://doi.org/10.1029/GL014i009p00945.Google Scholar
  48. Samanta, D., M. K. Dash, B. N. Goswami, and P. C. Pandey, 2016: Extratropical anticyclonic Rossby wave breaking and Indian summer monsoon failure. Climate Dyn., 46, 1547–1562,  https://doi.org/10.1007/s00382-015-2661-7.Google Scholar
  49. Tian, B., Y. L. Yung, D. E. Waliser, T. Tyranowski, L. Kuai, E. J. Fetzer, and F. W. Irion, 2007: Intraseasonal variations of the tropical total ozone and their connection to the Madden-Julian Oscillation. Geophys. Res. Lett., 34, L08704,  https://doi.org/10.1029/2007GL029451.Google Scholar
  50. Tian, B. J., D. E. Waliser, R. A. Kahn, and S. Wong, 2011: Modulation of Atlantic aerosols by the Madden-Julian Oscillation. J. Geophys. Res., 116, D15108,  https://doi.org/10.1029/2010JD015201.Google Scholar
  51. Waliser, D. E., 2006: Intraseasonal variability. The Asian Monsoon, B. Wang, Ed., Springer, 203–257,  https://doi.org/10.1007/3-540-37722-0.Google Scholar
  52. Wang, B., and H. Rui, 1990: Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteor. Atmos. Phys., 44, 43–61,  https://doi.org/10.1007/BF01026810.Google Scholar
  53. Wang, B., P. J. Webster, and H. Y. Teng, 2005: Antecedents and self-induction of active-break south Asian monsoon unraveled by satellites. Geophys. Res. Lett., 32, L04704,  https://doi.org/10.1029/2004GL020996.Google Scholar
  54. Wang, T., X. L. Wei, A. J. Ding, C. N. Poon, K. S. Lam, Y. S. Li, L. Y. Chan, and M. Anson, 2009: Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmospheric Chemistry and Physics, 9(16), 6217–6227,  https://doi.org/10.5194/acp-9-6217-2009.Google Scholar
  55. Waugh, D. W., and B. M. Funatsu, 2003: Intrusions into the tropical upper troposphere: Three-dimensional structure and accompanying ozone and OLR distributions. J. Atmos. Sci., 60, 637–653,  https://doi.org/10.1175/1520-0469(2003)060<0637:IITTUT>2.0.CO;2.Google Scholar
  56. Wen, M., and R. H. Zhang, 2008: Quasi-biweekly oscillation of the convection around Sumatra and low-level tropical circulation in boreal spring. Mon. Wea. Rev., 136, 189–205,  https://doi.org/10.1175/2007MWR1991.1.Google Scholar
  57. Wespes, C., D. Hurtmans, C. Clerbaux, and P.-F. Coheur, 2017: O3 variability in the troposphere as observed by IASI over 2008–2016: Contribution of atmospheric chemistry and dynamics. J. Geophys. Res. Atmos., 122(4), 2429–2451,  https://doi.org/10.1002/2016JD025875.Google Scholar
  58. Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932,  https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2.Google Scholar
  59. Xu, J. L., Y. X. Zhu, and J. L. Li, 1997: Seasonal cycles of surface ozone and NOx in Shanghai. J. Appl. Meteor., 36, 1424–1429,  https://doi.org/10.1175/1520-0450(1997)036<1424:SCOSOA>2.0.CO;2.Google Scholar
  60. Xu, X. B., and W. L. Lin, 2011: Trends of tropospheric ozone over China based on satellite data (1979-2005). Advances in Climate Change Research, 2(1), 43–48,  https://doi.org/10.3724/SP.J.1248.2011.00043.Google Scholar
  61. Yasunari, T., 1979: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242,  https://doi.org/10.2151/jmsj1965.57.3227.Google Scholar
  62. Zhang, C. D., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003,  https://doi.org/10.1029/2004RG000158.Google Scholar
  63. Zhang, C. D., and M. Dong, 2004: Seasonality in the Madden–Julian oscillation. J. Climate, 17, 3169–3180,  https://doi.org/10.1175/1520-0442(2004)017<3169:SITMO>2.0.CO;2.Google Scholar
  64. Zhang, L., W. Q. Han, Y. L. Li, and E. D. Maloney, 2018: Role of North Indian Ocean air-sea interaction in summer monsoon intraseasonal oscillation. J. Climate, 31, 7885–7908,  https://doi.org/10.1175/JCLI-D-17-0691.1.Google Scholar
  65. Zhang, Y. L., Y. Liu, C. X. Liu, and V. F. Sofieva, 2015: Satellite measurements of the Madden-Julian Oscillation in wintertime stratospheric ozone over the Tibetan Plateau and East Asia. Adv. Atmos. Sci., 32(11), 1481–1492,  https://doi.org/10.1007/s00376-015-5005-y.Google Scholar

Copyright information

© Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations